0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Самодельный регулируемый блок питания от 0 до 14 Вольт

Самодельный регулируемый блок питания от 0 до 14 Вольт.

Собирая лабораторный блок питания своими руками, многие сталкиваются с проблемой выбора схемы. Импульсные блоки питания при наладке самодельных передатчиков или приемников могут давать нежелательные помехи в эфир, а линейные блоки питания зачастую не в силах развивать большую мощность. Почти универсальным блоком может стать простой линейный блок питания 1,3 – 30В и током 0 – 5А, который будет работать в режиме стабилизации тока и напряжения. При желании им можно будет, как зарядить аккумулятор, так и запитать чувствительную схему.

В сети гуляет интересная схема, которая обсуждалась на множестве форумов, отзывы по ней были ну совсем неоднозначные. Ниже приводим оригинал этой схемы, и вкратце расскажем, откуда она взята. На основе ее мы сделаем лабораторный блок питания своими руками.

Это почти классика. Блок питания реализован на стабилизаторе напряжения LM317, который может регулировать напряжение в пределах 1,3 – 37В. Работая в паре с мощным транзистором КТ818, схема способна протянуть через себя уже значительный ток. Ограничитель и стабилизатор тока, так называемая защита лабораторного блока питания, организована на LM301.

Если обратиться к первоисточникам, можно увидеть, что основа схемы описывалась в разных книгах, например Г. Шрайбер «300 схем источников питания» стр. 39.

А также упоминалась в книге П. Хоровиц «Искусство схемотехники» том 1, стр. 358.

Новичкам, собирающий первый блок питания, рекомендуем ознакомиться с вышеупомянутой литературой, там есть, что для себя почерпнуть.

Как видим, основа особо не поменялась, схема обросла парой фильтрующих конденсаторов, диодными мостами и весьма странным способом включения измерительной головки. Также применяется транзистор КТ818, который значительно уступает по мощности MJ4502 или MJ2955.

Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.

Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.

Лабораторный блок питания — пошаговая сборка

Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.

После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.

Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.

Шаг. 1 Установка элементов, отвечающих за регулировку напряжения

Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.

Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.

На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.

Шаг. 2 Установка конденсаторов фильтра

Устанавливаем конденсаторы С3; С4; С8 — С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.

Шаг. 3 Подключение силовых транзисторов

Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.+

При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В) откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно!Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.+

Шаг. 4 Балансировка транзисторов

Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.+

Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.+

Шаг. 5 Подключение питания для ОУ и периферии

В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.+

Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2(положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905устанавливается конденсатор С14.

Читать еще:  Простой скворечник из бревна

После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812должно быть 12 В.+

Шаг. 6 Установка операционного усилителя и элементов стабилизации тока

Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .

Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.+

С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.+

Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.

На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.+

Шаг. 7 Установка нуля

Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).+

Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.+

С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.+

Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.+

Шаг. 8 Установка защитных диодов

Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.

Шаг. 9 Настройка ограничения максимального тока

  • Выставляем на блоке 12В.
  • Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) — на выходе 12 В.
  • Р1 — на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 — горит светодиод.
  • Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
  • С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.

Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.+

Шаг. 10 Подключение вольтамперметра

При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.+

Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.+

Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!+

Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.+

Ну и демонстрация работы лабораторного блока питания:+

Яркий, информативный дисплей 3-х канального блока питания Keithley 2231A-30-3

При работе с трёхканальным источником питания, очень важно одновременно видеть текущие значения напряжения и тока сразу по всем каналам. Дисплей Keithley 2231A-30-3 очень информативный. Кроме индикации текущих значений по всем выходам, на него выводится служебная информация: на фотографии ниже значение «Para» во втором канале означает, что первый и второй каналы работают параллельно для увеличения выходного тока. Подробнее о количестве каналов лабораторных блоков питания смотрите здесь.

На дисплее прибора Keithley 2231A-30-3 одновременно отображаются текущие значения выходного напряжения и тока сразу по всем трём каналам.

Читать еще:  Самодельная тумба под аквариум

Выбор лабораторного блока питания (часть 1)

Автор: Celeron
Дата: 30.12.2011

В статье рассматривается ассортимент присутствующих на рынке лабораторных источников питания в доступном ценовом сегменте, от устройств хобби-класса до полупрофессиональных. Анализируются особенности приборов, достоинства и недостатки, сравниваются по критерию цена-качество. Приведены ссылки на источники информации, использованные при составлении обзора.

Содержание

Классификация


По типу, лабораторные БП бывают:

  • «одноканальные»;
  • «двухканальные» (имеют два регулируемых выхода напряжения);
  • «трёхканальные» (три выхода: как правило, 2 регулируемых, и 1 нерегулируемый +5В)

В зависимости от мощности, разные модели дают на выходе:

  • напряжение: 0..15В(18В) ..30В(32В) ..(50В)60В
  • ток: 0..2А(3А) ..5А ..10А ..20А ..30А

Причём, в регулируемых лабораторных БП предусмотрена раздельная регулировка выходных напряжения и тока: на корпусе есть удобные крутилки или кнопки.

По исполнению, лабораторные БП бывают:

  • Линейные (классические трансформаторные),
  • Импульсные (для больших мощностей).

Чтобы избежать путаницы, важнейшие характеристики отражены в названии модели БП. Этот международный стандарт именования, с незначительными различиями, поддерживают практически все производители (кроме отечественных — у наших, конечно, свои системы):

  • Максимальная выдаваемая мощность (напряжение и ток) отражена числом (обычно 4-значным, редко 3- или 5-), например: «3005» (напряжение до 30В и максимальный ток до 5А); «1502» (до 15В и до 2А)
  • Буквы до номера — это код производителя («PS..», «HY..», «AX..»)
  • Второе число после чёрточки — число каналов (например, два канала «HY3005-2», три канала «HY3005-3»)

Бренды производителей бюджетных БП, по возрастанию крутости:

  • BAKKU, DazHeng, ZHAOXIN(дешёвый Китай — эти БП ненадёжные, часто горят)
  • Masteram(ха! подобно Mastech, стал завозить добротный Китай и продавать под своей торговой маркой)
  • Mastech(своих заводов не имеет — это только Российская торговая марка, завозит избранные модели добротных китайских БП и клеит свою лейбу)
  • HYelec(хороший Китай — самый ходовой в бюджетном классе)
  • ATTEN
  • AXIOMET(оптимум функционала и качества — я рекомендую!)
  • Manson(их прецизионные блоки питания «NRP», известные в России как «АКИП»,внесены в Госреестр РФФ)
  • MATRIX(молодая китайская фирма, избравшая приоритетом высокое качество продукции — поэтому их осциллографы и блоки питания внесены в Госреестр РФФ!)
  • RIGOL и другие прецизионные и специализированные БП, обычным людям недоступные.

Примечание: Все представленные здесь производители — китайские. Немного жаль, что отечественных производителей на рынке нет (только торговые марки), по крайней мере в бюджетном диапазоне.

Одноканальные блоки питания


Для большинства применений хватает одноканального блока питания:

  • Они самые дешёвые.
  • И их самый разнообразный выбор моделей:
    • по мощностям: маломощные до 3А, средние до 5А, мощные до 30А, сверхмощные до 60А и выше.
    • по индикации: цифровые LED (светодиодные), цифровые LCD (жидкокристаллические), аналоговые стрелочные индикаторы.
    • по управлению: аналоговые крутилки потенциометры, цифровые крутилки энкодеры, цифровые кнопки.
    • по разнообразию брендов — на любой выбор цена/качество.

Примеры:

  • Одноканальные БП Mastech(схемы принципиальные на БП Mastech я нашёл тут)
  • Одноканальные БП Masteram
  • Одноканальные БП AXIOMET

Рекомендую модель(я себе такой купил — очень радует!): «AXIOMET AX-3005D» (одноканальный, до 30В 5А)

  • Присутствует режим «стабилизации тока» (полезнейшая функция!)
  • Есть всевозможные защиты выхода: от переполюсовки, от перенапряжения, от перенагрузки.
  • В отличие от дешёвых БП, вес Axiomet больше на 20%-50% — т.е. внутри явно много железа! И главное: тут большой силовой трансформатор — а значит больше и запас мощности, и надёжность устройства. (разбирали, смотрели — действительно, габариты трансформатора внушают!)
  • Для охлаждения: На задней стенке стоит большой, безшумный и неломающийся радиатор. Кулеров нет! Внутри тоже: все силовые компоненты, где требуется, посажены на собственные радиаторы.
  • Внутри AXIOMET тоже выглядит очень опрятно: все провода подвязаны и закреплены, все контакты в изоляции, на корпусе больше опорных стоек и стяжек… (на сборке — не экономили)
  • Корпус сделан добротно: большие и надёжные клеммы, удобные кнопки и крутилки… Радует удобная мелочь: ручка сверху на корпусе, для переноски.
  • Индикация: AXIOMET делает лабораторные БП только с цифровыми LCD-индикаторами. (В условиях низкой освещённости их плохо видно — это не очень удобно, LED были бы лучше… Но в условиях хорошей освещённости — наоборот, лучше видно LCD, чем LED!)

Купить можно за 1200грн.=150$=4400руб.

Также очень интересная модель: «MATRIX MPS-6003S» (одноканальный, до 60В 3А)

  • Также присутствует режим «стабилизации тока»
  • На выходе выдаёт до 60В! (вообще, это редкая особенность: большинство лабораторных БП средней мощности выдают только до 50В)
  • Область применения: множество электрических схем, для которых напряжения до 30В мало — где требуется повышенное до 50..60В (это отдельный класс схем — и под них заточен отдельный класс лабораторных БП)
  • Внесён в Госреестр средств измерений РФФ: регистрационный №32050-06(аккредитация Росстандартом, признание метрологов — это очень круто!)
  • Регулировка осуществляется: четырьмя эргономичными крутилками, а не цифровыми кнопками (хочу отметить, лично мне крутилки гораздо удобнее)
  • Для охлаждения: сзади также имеется большой охладительный радиатор

Купить можно за 1400грн.=170$=5100руб.
(Альтернативная модель этого диапазона: «HYelec HY-5005, HY-5005E»)

Одноканальные БП пониженной мощности


Есть также целый ряд моделей пониженной мощности (на меньшие напряжения и ток, и дешевле) — годятся для ремонта мобильных телефонов:

Индикатор цифровой для блока

Для визуализации показаний напряжения и тока в нагрузке применил вольтамперметр DSN-VC288, который обладает следующими характеристиками:

  • диапазон измерений: 0-100 В 0-10A;
  • рабочий ток: 20mA;
  • точность измерения: 1%;
  • дисплей: 0.28 » (Два цвета: синий (напряжение), красный (сила тока);
  • минимальный шаг измерения напряжения: 0,1 В;
  • минимальный шаг измерения силы тока: 0,01 A;
  • рабочая температура: от -15 до 70 °С;
  • размер: 47 х 28 х 16 мм;
  • рабочее напряжение, необходимое для работы электроники ампервольтметра: 4,5 – 30 В.

Учитывая диапазон рабочего напряжения существует два способа подключения:

  • Если источник измеряемого напряжения работает в диапазоне от 4,5 до 30 Вольт, то тогда схема подключения выглядит так:

  • Если источник измеряемого напряжения работает в диапазоне 0-4,5 В или выше 30 Вольт, то до 4,5 Вольт ампервольтметр не запустится, а при напряжении более 30 Вольт он просто выйдет из строя, во избежание чего следует воспользоваться следующей схемой:
Читать еще:  Уникальная беседка пергола на дачном участке

В случае с данным блоком питания, напряжение для питания ампервольтметра есть из чего выбрать. В блоке питания есть два стабилизатора – 7824 и 7812. До 7824 длина провода получалась короче, поэтому запитал прибор от него, подпаяв провод к выходу микросхемы.

  • R1 = 2,2 кОм 1 Вт
  • R2 = 82 Ом 1/4 Вт
  • R3 = 220 Ом 1/4 Вт
  • R4 = 4,7 кОм 1/4 Вт
  • R5, R6, R13, R20, R21 = 10 кОм 1/4 Вт
  • R7 = 0,47 Ом 5W
  • R 8, R 11 = 27 кОм 1 / 4W
  • R9, R19 = 2,2 кОм 1 / 4W
  • R10 = 270 кОм 1 / 4W
  • R 12, R 18 = 56KOhm 1 / 4W
  • R14 = 1,5 кОм 1 / 4W
  • R15 , R16 = 1 кОм 1/4 Вт
  • R17 = 33 Ом 1/4 Вт
  • R22 = 3,9 кОм 1/4 Вт
  • RV1 = переменный 100 кОм
  • P1, P2 = 10 кОм линейные
  • C1 = 3300 мкФ / 50 В
  • C2, C3 = 47 мкФ / 50 В
  • C4 = 100 нФ
  • C5 = 200 нФ
  • C6 = керамика 100 пФ
  • C7 = 10 мкФ / 50 В
  • C8 = 330 пФ керамика
  • C9 = 100 пФ керамика
  • D1, D2, D3, D4 = 1N5402,3,4 диод 2 A — RAX GI837U
  • D5, D6 = 1N4148
  • D7, D8 = 5,6 В стабилитрон
  • D9, D10 = 1N4148
  • D11 = 1N4001 диод 1 A
  • Q1 = BC548 или BC547
  • Q2 = 2N2219
  • Q3 = BC557 или BC327
  • Q4 = 2N3055 силовой транзистор
  • U1, U2, U3 = TL081
  • D12 = светодиод

Методы измерения напряжения и тока выхода в таком источнике питания зависят от ваших возможностей и пожеланий. Когда дело доходит до напряжения, следует использовать любой вольтметр и подключать его к выходным клеммам устройства. Измерение тока в данном случае проводилось с помощью светодиодной линейки и микросхемы LM3915.

Чтобы иметь возможность измерять ток таким способом, напряжение возникающее на резисторе R7 должно быть первоначально усилено, поскольку LM3915 требует более высоких напряжений для измерения (на резисторе R7 при 3 A ток будет около 1,5 В). Усилить это напряжение надо с помощью операционного усилителя (по схеме неинвертирующего усилителя), и из-за того, что источник питания также имеет отрицательные напряжения, придется делать дополнительный канал питания.

Лучше питать дополнительный операционный усилитель так же, как U3. Усиливая напряжение с резистора R7, можно соблазниться регулируемым усилением (простая замена 2 или 3 резисторов с помощью переключателя), благодаря которому получим различные диапазоны измерения тока — полезные при низких токах. Также при настройке LM3915 может быть линейка или точка — по желанию.

Блок питания 1-30V на LM317 + 3 х TIP41C или 3 х 2SC5200.

Блок питания 1-30V на LM317 + 3 х TIP41C
или 3 х 2SC5200.

Регулируемый блок питания 10А на LM317

В статье рассмотрена схема простого регулируемого источника питания, реализованная на микросхеме-стабилизаторе LM317, которая управляет мощными, включенными в параллель тремя транзисторами структуры NPN. Пределы регулировки выходного напряжения 1,2. 30 Вольт с током нагрузки до 10 Ампер. В качестве мощных выходников применены транзисторы TIP41C в корпусе TO220, ток коллектора у них 6 Ампер, рассеиваемая мощность 65 Ватт. Принципиальная схема блока питания показана ниже:

В качестве выходников так же можно применить TIP132C, корпус TO220, ток коллектора у этих транзисторов 8 Ампер, рассеиваемая мощность 70 Ватт согласно datasheet.

Расположение выводов у транзисторов TIP132C, TIP41C следующее:

Расположение выводов у регулируемого стабилизатора LM317:

Транзисторы в корпусе TO220 впаиваются непосредственно в печатную плату и крепятся к одному общему радиатору с применением слюды, термопасты и изолирующих втулок. Но можно и применить транзисторы в корпусе TO-3, из импортных подойдут, например, 2N3055, ток коллектора которых до 15 Ампер, рассеиваемая мощность 115 Ватт, или транзисторы отечественного производства КТ819ГМ, они 15 Амперные с рассеиваемой мощностью 100 Ватт. В этом случае выводы транзисторов соединяются с платой проводами.

Как вариант, можно рассмотреть применение импортных 15-ти амперных транзисторов TOSHIBA 2SC5200 с рассеиваемой мощностью 150 Ватт. Именно этот транзистор я использовал при переделке KIT-набора блока питания, купленного на Алиэкспресс.

На принципиальной схеме клеммы PAD1 и PAD2 предназначены для подключения амперметра, на клеммы X1-1 (+) и X1-2 (-) подается входное напряжение с выпрямителя (диодного моста), X2-1 (-) и X2-2 (+) это выходные клеммы блока питания, к клеммнику JP1 подключается вольтметр.

Первый вариант печатной платы рассчитан на установку силовых транзисторов в корпусе TO220, вид LAY6 формата следующий:

Фото-вид платы LAY6 формата:

Второй вариант печатной платы под установку транзисторов типа 2SC5200, вид LAY6 формата ниже:

Фото-вид второго варианта печатной платы блока питания:

Третий вариант печатной платы такой же, но без диодной сборки, найдете в архиве с остальными материалами.

• R1 – потенциометр 5K – 1 шт.
• R2 – 240R 0,25W – 1 шт.
• R3, R4, R5 – керамические резисторы 5W 0R1 – 3 шт.
• R6 – 2K2 0,25W – 1 шт.

• С1, С2 – 4700. 6800mF/50V – 2 шт.
• С3 – 1000. 2200mF/50V – 1 шт.
• С4 – 150. 220mF/50V – 1 шт.
• С5, С6, С7 – 0,1mF = 100n – 3 шт.

• D1 – 1N5400 – 1 шт.
• D1 – 1N4004 – 1 шт.
• LED1 – светодиод – 1 шт.
• Диодная сборка – у меня не было в наличии сборок на чуть меньший ток, поэтому плата нарисована под использование KBPC5010 (50 Ампер) – 1 шт.

Транзисторы, микросхемы:

• IC1 – LM317MB – 1 шт.
• Q1, Q2, Q3 – TIP132C, TIP41C, КТ819ГМ, 2N3055, 2SC5200 – 3 шт.

• Разъемы 2 Pin с болтовым зажимом (вход, выход, амперметр) – 3 шт.
• Разъем 2 Pin 2,54mm (светодиод, регулирующий переменник) – 2 шт.
В принципе разъемы можно и не ставить.
• Внушительный радиатор для выходников – 1 шт.
• Трансформатор, вторичка на 22. 24 Вольта переменки, способная дежать ток порядка 10. 12 Ампер.

Размер файла архива с материалами по блоку питания на LM317 10A – 0,6 Mb.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector