0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Самодельная паяльная станция на ATmega8

Содержание

Самодельная паяльная станция на ATmega8

Что является одним из самых важных инструментов в наборе инженера, работа которого связана с электроникой. Это то, что вы, вероятно, любите и ненавидите, – паяльник. Вам необязательно быть инженером, чтобы он вам вдруг понадобился: достаточно быть просто умельцем, которые ремонтирует что-либо у себя дома.

Для базовых применений хорошо справляется и обычный паяльник, который вы включаете в розетку; но для более деликатной работы, такой как ремонт и сборка электронных схем, вам понадобится паяльная станция. Регулирование температуры имеет решающее значение, так как не сжигает компоненты, особенно микросхемы. Кроме того, вам также может потребоваться, чтобы она была достаточно мощной, чтобы поддерживать определенную температуру, когда вы будете что-то припаивать к большому земляному полигону.

В данной статье мы рассмотрим, как можно собрать собственную паяльную станцию.

Паяльная станция своими руками

Также может быть перегрев платы и как результат отслоение дорожек. Поэтому в нашей статье мы рассмотрим простой способ изготовления паяльной станции своими силами. Ниже вам будут предоставлены все нужные для сборки схемы, фотографии и видео примеры.

Как правило, все станции подразделяют на:
— аналоговые и цифровые устройства;
— контактные станции;
— бесконтактные устройства;
— индукционные аппараты;
— демонтажные станции.

Если разделять станции по принципу работы их управляющих блоков, а также механизму стабилизации температуры паяльные станции также подразделяют на: цифровые и аналоговые.

Делаем аналоговый (контактный) паяльник

Его смело можно назвать бюджетным и самым простым вариантом. Благодаря регулировке напряжения (на паяльнике), можно изменять температуру самого жала. Если вы используете метод проб и ошибок, он позволит вам выяснить производительность нагревателя, а также положение регулятора. Также вы всегда сможете настроить сам процесс пайки так как нужно и удобно именно вам, или даже под конкретный момент производства. В качестве регулятора напряжения лучше всего использовать диммер для люстры или иными словами светорегулятор. Если говорить о недостатках, то стоит отметить, что у этой идеи сборки он всего один – для установки температур на выходе имеется очень малый диапазон. То есть для самой пайки нам важно сделать напряжение в диапазоне от 200 Вт и до 220 Вт, а не от 0 и до максимума. Вероятнее всего, что придется несколько изменить схему и добавить к основному дополнению резистор «тонкой настройки».

Собираем паяльную станцию у себя дома

В схеме, предоставленной ниже, используется выпрямительный мост. Его использование позволяет поднимать на нашей самодельной паяльной станции со 220 Вт (стандартных на входе) и до 310 Вт (на выходе).

Лучше всего такой метод подойдет для мастеров, в доме которых постоянно отсутствует высокое электрическое напряжение, в результате чего паяльник не может нагреться к нужной рабочей температуре. Если у вас в наличии нет диммера – вы можете собрать его своими руками. Что для этого понадобится и саму суть процедуры мы с вами рассматривали немного ранее в статье о самодельном светорегуляторе.

Как создать паяльную станцию на базе Arduino

Для того чтобы создать такую станцию, вам прежде всего понадобится ручка паяльной станции. Как правило, используют станции типа 907 A1322 939 китайского производства.

Итак, приступим

480℃.
3. Напряжение: 24V DC.

Для того, чтобы управлять ручкой паяльника, понадобится время от времени снимать данные с температурного датчика. В этом всегда поможет LM358N.
Также нам нужно иметь возможность управлять нагревательным элементом нашего паяльника, то есть включать и выключать его. С этой задачей прекрасно справится импульсный транзистор IRFZ44. Он очень просто подключается.

Подключая ручку нужно соблюдать определенную схему.

Перед пуском в обязательном порядке проверяйте ручки. То есть ее нужно раскрутить и проверить на целостность нагревательный элемент, а также правильно ли спаяны провода на разъёме.

Также нам нужен контроллер. Для демонстрации я выбрал самый удобный и популярный Arduino Uno. Стоит учесть, что для того, чтобы иметь возможность выбрать контроллер самому – я сделал блочную паяльную станцию. Также на м понадобятся две кнопки подтянутые к +5В сопротивлениям и 10кОм, а также 7-ми сегментный индикатор на три разряда. Выводы сегментов подключаются через сопротивления 100 Ом.

ANODES:
D0 — a
D1 — b
D2 — c
D3 — d
D4 — e
D5 — f
D6 — g
D7 — dp (точка)

CATHODES:
D8 — cathode 3
D9 — cathode 2
D10 — cathode 1

Теперь можем посмотреть на то, что же у нас получилось.

После всего этого нам нужно будет подобрать нужный источник питания. Я, к примеру, взял блок питания на 22V 3A от ноутбука который у меня был под руками. Этого блока питания вполне хватить.
Далее предлагаю вам просмотреть видео, которое поможет вам лучше понять суть процесса сборки.

Технология изготовления паяльной станции из подручных средств

Человек, который владеет элементарными знаниями в области электротехники, сможет собрать паяльную станцию своими руками. Для этого необходимо следовать простым инструкциям, приведенным ниже.

Общие требования к самодельному оборудованию

К самодельному агрегату с феном предъявляются конкретные требования. Он должен обеспечить создание потока воздуха, нагретого до 850°С. Мощность нагревательного элемента не должна превышать 2,6 кВт.

При выборе комплектующих к станции необходимо отдавать предпочтение тем, что имеются в наличии или отличаются невысокой стоимостью. Поэтому целесообразно изготавливать ручной или стационарный агрегат с феном. Последний работает таким образом, что излучатель тепловой энергии находится неподвижно, при этом сама деталь движется. Данный принцип работы создает определенные трудности при осуществлении пайки.

Чтобы повысить эффективность производимых работ, желательно использовать ручной агрегат. Он имеет небольшие размеры и вес, что облегчает эксплуатацию.

Читать еще:  Делаем сушилку для обуви в домашних условиях

Особенности создания нагревателя

Специалисты рекомендуют самостоятельно изготовить нагреватель их нихромовой проволоки. Она должна иметь диаметр в пределах 0,4-0,8 мм. Необходимо понимать, что большой размер проволоки придаст ей огромный запас прочности, но утруднит достижение оптимальной температуры. Поэтому нецелесообразно применять для этого слишком крупную нить.

Внешний диаметр сформированной нагревательной спирали должен составлять 4-8 мм. Для фиксации созданной детали используют специальное основание, которое устойчиво к воздействию высоких температур. Специалисты рекомендуют отдавать предпочтение керамике. Такое основание можно изъять из обычного бытового фена.

Технология формирования нагнетателя горячего воздуха

Чтобы созданная самодельная станция работала эффективно, необходимо оснастить ее вентилятором небольших размеров. Его можно изъять со старого фена или другого ненужного бытового прибора. Вентилятор должен обеспечивать воздушным потоком в 20 л/мин.

Допускается применение воздушного компрессора, который обычно ставят на аквариумы. Чтобы агрегат работал более эффективно, его дополняют ресивером. Для этой цели можно взять обычную пластиковую бутылку.

Формирование корпуса станции с феном

Для создания корпуса паяльной станции необходимо использовать термостойкие материалы. Это можно сделать несколькими способами, используя такие варианты:

  • керамика. По обеспечению безопасности отличное, но очень дорогое решение;
  • частичная теплоизоляция канала, по которому передвигается нагретый до высоких температур воздух;
  • старый корпус от любого бытового прибора. Должен быть объемным и не подвергаться разрушению от высокой температуры.

Сборка и обеспечение работоспособности оборудования

Чтобы созданная паяльная станция работала эффективно, в ее конструкцию добавляют включатель и устройство для регулировки основных рабочих параметров. Последний агрегат должен задавать оптимальную температуру воздуха и скорость его перемещения. Чтобы добиться данной цели, в состав оборудования включают реостаты. С их помощью можно осуществить плавную регулировку мощности.

Создание станции необходимо начинать с формирования спирали. Ее наматывают на качественный изолятор и сверху накрывают стекловолокном. Концы спирали в результате должны выходить наружу. Полученную деталь укладывают в корпус с готовой теплоизоляцией. Спираль в последующем соединяют с силовым проводом, к которому подключен выключатель. С тыльной стороны корпуса монтируют нагнетатель воздуха.

Принципиальная схема

Схема предельно простая. В основе всего микроконтроллер Atmega8. Сигнал с оптопары подается на операционный усилитель с регулируемым коэффициентом усиления (для калибровки) и затем на вход АЦП микроконтроллера. Для отображения температуры использован семисегментный индикатор с общим катодом, разряды которого включены через транзисторы. При вращении ручки энкодера BQ1 задается температура, а в остальное время отображается текущая температура. При включении задается начальное значение 280 градусов. Определяя разницу между текущей и требуемой температурой, пересчитав коэффициенты ПИД-составляющих, микроконтроллер при помощи ШИМ-модуляции разогревает паяльник.
Для питания логической части схемы использован простой линейный стабилизатор DA1 на 5В.

Принципиальная схема Simple Solder MK936

Схема паяльной станции своими руками, элементная база

Ключевой инструмент паяльной станции является паяльник. Если при самостоятельной сборке станции можно использовать какие-то элементы, снятые, например, с отслуживших свой срок бытовых приборов. То паяльник без всяких споров должен быть новый. Многие мастера отдают предпочтение изделиям Solomon и некоторым другим.

Схема паяльной станции

После подбора паяльника можно приступит к выбору диодного моста для электрической схемы и трансформатора. Для того, что бы получить напряжение в 5 В необходим линейный стабилизатор с хорошим охлаждением. В качестве альтернативного варианта можно рассмотреть использование трансформатора, у которого есть в наличии обмотка, которая необходима для обслуживания цифрового блока.

Принципиальную схему самодельного устройства можно поискать на специализированных форумах.

Маленькая паяльная станция своими руками v2

Некоторое время назад я собрал маленькую паяльную станцию, о которой хотел рассказать. Это дополнительная упрощенная паяльная станция к основной, и конечно не может ее полноценно заменить.

Основные функции:

1. Паяльник. В коде заданы несколько температурных режимов (100, 250 и 350 градусов), между которыми осуществляется переключение кнопкой Solder. Плавная регулировка мне тут не нужна, паяю я в основном на 250 градусах. Мне лично это очень удобно. Для точного поддержания температуры используется PID регулятор.

Заданные режимы, пины, параметры PID можно поменять в файле 3_Solder:

2. Фен. Также заданы несколько температурных режимов (переключение кнопкой Heat), PID регулятор, выключение вентилятора только после остывания фена до заданной температуры 70 градусов.

Заданные режимы, пины, параметры PID можно поменять в файле 2_Air:

  1. Паяльник применил от своей старой станции Lukey 936A, но с замененным нагревательным элементом на китайскую копию Hakko A1321.
  2. Кнопка отключения отключает сразу все что было включено.
  3. Можно одновременно включать и паяльник и фен.
  4. На разъеме фена присутствует напряжение 220В, будьте осторожны.
  5. Нельзя отключать паяльную станцию от сети 220В пока не остынет фен.
  6. При отключенном кабеле паяльника или фена, на дисплее будут максимальные значения напряжения с ОУ, пересчитанные в градусы (не ноль). Поясню: если например просто подключить кабель холодного паяльника должен показывать комнатную температуру, при отключении покажет например 426. Какой в этом плюс: если случайно оборвется провод термопары или терморезистора, на выходе ОУ будет максимальное значение и контроллер просто перестанет подавать напряжение на нагреватель, так как будет думать что наш паяльник раскален и его нужно охладить.
  7. Защиты от КЗ нет, поэтому рекомендую установить предохранители.
  8. Стабилизатор на 5В для питания Arduino используйте любой доступный с учетом напряжения питания вашего БП и нагрева в случае линейного стабилизатор. Так как у меня напряжение 20В установил 7805.
  9. Паяльник прекрасно работает и при 30В питания, как в моей основной паяльной станции. Но при использовании повышенного напряжения учитывайте все элементы: стабилизатор 5В и то что напряжение вентилятора 24В.

Основные узлы и состав:

1. Основная плата:

— Arduino Pro mini,
— сенсорные кнопки,
— дисплей от телефона Nokia 1202.

2. Плата усилителей:

— усилитель терморезистора паяльника,
— полевой транзистор нагрева паяльника,
— усилитель термопары фена,
— полевой транзистор включения вентилятора фена.

3. Плата симисторного модуля

— оптосимистор MOC3063,
— симистор со снабберной цепочкой.

— блок питания от ноутбука 19В 3.5А,
— выключатель,
— стабилизатор для питания Arduino.

А теперь подробнее по узлам.

1. Основная плата


Обратите внимание наименование сенсорных площадок отличается от фото. Дело в том, что в связи с отказом от регулировки оборотов вентилятора, в коде я переназначил кнопку включения фена. В самом начале регулировка оборотов была реализована, но так как напряжение моего БП 20В (увеличил на 1В добавлением переменного резистора), а вентилятор на 24В, решил отказаться. Сигнал с сенсорных кнопок TTP223 (включены в режиме переключателя Switch, на пин TOG подан 3.3В) считывается Arduino. Дисплей подключен через ограничительные резисторы для согласования 5В и 3.3В логики. Такое решение не совсем правильное, но уже работает несколько лет в разных устройствах.

Читать еще:  Как сделать рукоятку для японской пилы

Основная плата двухстороннего печатного монтажа. Металлизацию оставлял по максимуму, чтобы уменьшить влияние помех, а также для упрощения схемы сенсорных кнопок (для TTP223 требуется конденсатор по входу на землю для уменьшения чувствительности. Без него кнопка будет срабатывать просто при приближении пальца. Но так как у меня сделана сплошная металлизация этот конденсатор не требуется). Сделан вырез под дисплей.

На верхней стороне находятся площадки сенсорных кнопок, наклеена лицевая панель, припаивается дисплей. Площадки сенсорных кнопок и дисплей подключены к нижней стороне через перемычки тонким проводом. Типоразмер резисторов и конденсатора 0603.

Лицевую панель, по размерам из 3Д модели, я сначала нарисовал в программе FrontDesigner-3.0_rus, в файлах проекта лежит исходник.

Распечатал, вырезал по контуру, а также окно для дисплея.

Далее заламинировал самоклеящейся пленкой для ламинирования и приклеил к плате. Дисплей за также приклеен к этой пленке. За счет выреза в плате дисплей получился вровень с основной платой.

На нижней стороне находится Arduino Pro mini и микросхемы сенсорных кнопок TTP223.

2. Плата усилителей

Схема паяльника состоит из дифференциального усилителя с резистивным мостом и полевого транзистора с обвязкой.

  1. Для увеличения «полезного» диапазона выходного сигнала при низкоомном терморезисторе (в моем случае в китайской копии Hakko A1321 56 Ом при 25 градусах, для сравнения в 3д принтерах обычно стоит терморезистор сопротивлением 100 кОм при 25 градусах) применен резистивный мост и дифференциальный усилитель. Для уменьшения наводок параллельно терморезистору и в цепи обратной связи стоят конденсаторы. Данная схема нужна только для терморезистора, если в вашем паяльнике стоит термопара, то нужна схема усилителя аналогичной в схеме фена. Настройка не требуется. Только измерить сопротивление вашего терморезистора при 25 градусах и поменять при необходимости резистор 56Ом на измеренный.
  2. Полевой транзистор был выпаян из материнской платы. Резистор 100 кОм нужен чтобы паяльник сам не включился от наводок если ардуина например отключится, заземляет затвор полевого транзистора. Резисторы по 220 Ом для ограничения тока заряда затвора.

Схема фена состоит из неинвертирующего усилителя и полевого транзистора.

  1. Усилитель: типовая схема. Для уменьшения наводок параллельно термопаре и в цепи обратной связи стоят конденсаторы.
  2. Обвязки у полевого транзистора ME9926 нет, это не случайно. Включение ничем не грозит, просто будет крутится вентилятор. Ограничения тока заряда затвора тоже нет, так как емкость затвора небольшая.

Типоразмер резисторов и конденсаторов 0603, за исключением резистора 56 Ом — 1206.
Настройка не требуется.

Нюансы: применение операционного усилителя LM321 (одноканальный аналог LM358) для дифферециального усилителя не является оптимальным, так как это не Rail-to-Rail операционный усилитель, и максимальная амплитуда на выходе будет ограничена 3.5-4 В при 5В питания и максимальная температура (при указанных на схеме номиналах) будет ограничена в районе 426 градусов. Рекомендую использовать например MCP6001. Но нужно обратить внимание что в зависимости от букв в конце отличается распиновка:

3. Плата симисторного модуля

Схема стандартная с оптосимистором MOC3063. Так как MOC3063 сама определяет переход через ноль напряжения сети 220В, а нагрузка — нагреватель инерционный элемент, использовать фазовое управление нет смысла, как и дополнительных цепей контроля ноля.

Нюансы: можно немного упростить схему если применить симистор не требующий снабберной цепочки, у них так и указано snubberless.

4. Блок питания

Выбор был сделан по габаритным размерам и выходной мощности в первую очередь. Также я немного увеличил выходное напряжение до 20В. Можно было и 22В сделать, но при включении паяльника срабатывала защита БП.

5. Корпус

Корпус проектировался под мой БП, с учетом размеров плат и последующей печати на 3Д принтере. Металлический даже не планировался, приличный алюминиевый анодированный корпус дороговато и царапается, и куча других нюансов. А гнуть самому красиво не получится.

Шаг 2 — Собираем воздушный паяльник

Иногда при пайке, возникает необходимость замены SMD элементов и паяльник с жалом слишком велик и неудобен для этого. Для этих целей применяется специальный воздушный фен. Принцип его работы аналогичен домашнему фену — поток воздуха принудительно продувается через разогретый элемент и переносится к месту пайки, разогревая припой бесконтактно, равномерно, и не в одной точке, а в некоторой области.

Воздушный паяльник можно сделать из обычного, вставив вместо жала трубку от антенны, подходящую по размерам. Далее необходимо закрыть все отверстия, предусмотренные для охлаждения. Например, с помощью термостойкой бумаги и мотка медной проволоки, как показано на картинке.

Принудительная подача воздуха происходит аквариумным компрессором, с помощью трубочки для капельниц через часть, куда подключается сетевой шнур.

Для регулировки температуры потока воздуха можно воспользоваться диммером из прошлого способа. Дополнительно рекомендуется перемотать паяльник под более низкое напряжение порядка 8-15 вольт, это значительно повысит безопасность прибора из-за отсутствия опасных для жизни 220 вольт. В качестве нагревателя может служить нихромовая проволока диаметром 0,8 мм от спирали электроплитки. Ее необходимо аккуратно, без нахлестов и коротких замыканий намотать на оправу. Нужно обратить внимание, что также понадобится понижающий блок питания, мощность которого должна быть не менее 150 Ватт. В качестве него можно использовать подходящий сетевой трансформатор.

Более затратный метод регулирования температуры на горячем конце паяльника — это поддержание выставленных градусов на нем. Для этого возле жала дополнительно устанавливается термопара, в одной из наших статей мы рассказывали, как сделать терморегулятор своими руками.

Совместив наши самоделки, можно сделать универсальную паяльную станцию, которая будет держать выставленную температуру, что очень удобно и соответствует функционалу недешевых покупных моделей.

Другой вариант — сделать бесконтактную инфракрасную паяльную станцию из керамического патрона для лампы и спирали из нихрома, подключенной к понижающему трансформатору и диммеру для удобной регулировки. Можно также применить и терморегулятор.

Как работать с инфракрасной паяльной станцией можно посмотреть в видео ниже, там же узнать и про нюансы работы с ним:

Самодельная паяльная станция – один из вариантов

Наделённый массой функций прибор промышленного изготовления — удовольствие достаточно дорогое. Поэтому логичным видится решение задачи – как сделать паяльную станцию своими руками. Тем более что для истинного радиолюбителя, – это дело чести, создание собственной конструкции.

Компактная паяльная станция, конструкция которой предлагается в этой публикации, предусматривает использование тепловых наконечников паяльников фирмы «Weller». За основу взята технологичная идея паяльной станции, где используется процессор ATmega32u4.

Читать еще:  Простой и чувствительный металлоискатель на двух осцилляторах

Такой процессор применяется, к примеру, в составе популярного набора «Arduino Leonardo». Соответственно для программирования паяльной станции и загрузки ПО допустимо использовать «Arduino» IDE.

Паяльная станция (схема в PDF) оснащается OLED-дисплеем, а режим температур управляется всего одним энкодером (потенциометром).

Принципиальная схема паяльной станции для производства своими руками. Основой схемного решения выступает микропроцессор ATmega32u4

Помимо того, что паяльная станция основана на ATmega32u4, в конструкции добавлена функция обнаружения неисправности термопары. Если тепловой наконечник слабо контактирует с термопарой, питание станции отключается с целью предотвращения повреждения наконечника.

Для пользовательского ввода конструкцией предусмотрен только один поворотный энкодер (со встроенной кнопкой) для управления нагревателем. Модифицированная паяльная станция имеет OLED-дисплей 0,96 «вместо буквенно-цифрового ЖК-дисплея 2×16, используемого в ранних версиях.

Паяльная станция своими руками — схема аппарата

Ниже представленная схема предусматривает построение силового каскада на базе полевого транзистора типа IRF9540, управляемого драйвером. Часть схемы, представляющая драйвер, состоит из биполярных транзисторов T3, T2 и T4.

Причём двухтактный драйвер построен на T2 и T4, а элемент T3 обеспечивает сдвиг сигнала ШИМ AVR от уровня 5В до уровня VIN.

Часть схемы устройства паяльной станции своими руками, где реализуется функционал управления нагревом наконечника паяльника

Резистор номиналом 20 мОм (R18) и операционный усилитель INA138 используются для измерения тока, подаваемого на рабочий наконечник паяльника. Также применяется логический элемент MCP6002 в качестве буфера, что позволяет избежать попадания входного сигнала АЦП на выход INA138. Фильтр нижних частот на выходе буфера усредняет измеренное значение тока.

Вход для отслеживания значения температуры имеет подтягивающий резистор 1 МОм до 5В и понижающий резистор 10 МОм до 0В. Если по какой-либо причине наконечник не подключен, показания температуры приближаются к значению выше 600°C. Такое показание температуры свидетельствует о наличии неисправности в схеме.

Тепловой наконечник изделий серии «Weller» имеет термоэлемент внутри конструкции. Поскольку этот термоэлемент производит только небольшое зависящее от температуры усиление напряжения, требуется использовать полное разрешение АЦП MCU.

Управление подводимой мощностью к наконечнику

Для входной мощности (при напряжении не более 24В) используется небольшой LDO для MCU и OLED. Диод для защиты платы от обратной полярности присутствует.

Делитель напряжения R7-R9 позволяет MCU считывать фактическое входное напряжение (кусок схемы ниже). Текущая прошивка содержит функцию обнаружения пониженного напряжения (разряда батареи).

Кусок схемы, демонстрирующий реализацию функции управления напряжением, которое подаётся на рабочий наконечник паяльника

Если напряжение на входе падает ниже 10,8В, подача питания на рабочий наконечник прекращается. Поскольку паяльная станция своими руками — конструкция компактная, прибор допустимо использовать в полевых условиях с питанием от аккумулятора автомобиля.

Линейная функция поворотного энкодера

Также представляет определённый интерес поворотный энкодер. Конденсаторы 10 нФ добавлены для ослабления сигналов. Этот вариант схемного решения становится необходим, когда сигналы кодера обрабатываются способом полностью управляемого прерывания. Подтягивающие резисторы обеспечивают чётко определенное значение.

Кусок схемы, показывающий вариант реализации фильтра ослабления сигнала за счёт использования конденсаторно-резистивных цепочек

Внутренний блок MCU имеет свои собственные значения, но параметры значений ограничены диапазоном 20-60 кОм. Для текущей схемы корректным является стабильное значение 10 кОм.

Дисплей OLED подключен к SPI MCU без каких либо особенностей. Применяемое USB-соединение также выполняется в соответствии с таблицей данных и не содержит каких-либо специальных приемов.

Программное обеспечение самодельной паяльной станции

Программное обеспечение для паяльной станции написано без учёта платформы «Arduino», несмотря на то, что в схеме используется ATmega328P в качестве MCU. Это потребовало некоторой переделки, в данном случае, создания нового ядра программного обеспечения.

Поскольку у паяльной станции много общего с платформой «Arduino», программное обеспечение построено модульным принципом.

После окончательной сборки, программирования и включения самодельной паяльной станции, на дисплей выводится загрузочный логотип, после чего появляется главный экран. Пользователю доступно наблюдать:

  • текущую температуру,
  • подводимую к наконечнику мощность,
  • целевую температуру.

Информация выводится в виде гистограммы. Самодельная паяльная станция начинает греть рабочий наконечник паяльника сразу, как только на дисплее появляется главный экран. Значение заданной температуры сохраняется в EEPROM микропроцессора.

Если паяльная станция, сделанная своими руками, не применяется по назначению в течение десяти минут, активируется переход в режим отключения. Температура нагрева снижается до уровня 100°C.

Бездействие аппарата в течение следующих 10 минут приводит к тому, что паяльная станция своими руками переходит в режим ожидания. При этом на контрольном экране отображается логотип состояния.

Включается функционал перемещения логотипа по всей площади экрана дисплея – своего рода защита структуры экрана от разрушения в результате локальных перегрузок. Для восстановления рабочего режима достаточно нажать кнопку поворотного энкодера.

Паяльная станция своими руками — обработка ошибок

Программным обеспечением самодельной паяльной станции предусмотрен функционал обработки технических ошибок. К примеру:

  • снижения рабочего напряжения,
  • отсутствие нагрева сердечника паяльника,
  • обрыв цепей подключения температурного датчика.

Появление ошибки требует подтверждения активацией кнопки поворотного энкодера. После подтверждения, если паяльная станция не выдаёт повторной ошибки в течение 10 секунд, работа устройства возобновляется.

Паяльная станция в среднем потребляет ток не более 1,5 А. При этом используется максимальный рабочий цикл с 50% сигналом управления ШИМ. Если пользователь обладает источником питания, способным выдерживать нагрузку более 1,5 А, достаточно выставить соответствующее значение в коде прошивки.

При помощи информации: ElektorMagazine

Программатор отладчик PICkit 3: инструмент современного инженера электронщика

Литий-ионные аккумуляторы: как правильно заряжать

Датчик движения: что это такое и как работает?

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Паяльная станция с инфракрасным подогревом

Инфракрасная паяльная станция бывает необходима при ремонте микросхем BGA или компьютерных процессоров. Устройство состоит из верхней и нижней нагревательных секций и управляющего блока. Плата для пайки помещается между нагревательными секциями, где основную функцию разогрева выполняет верхняя, а нижняя – служит дополнительным тепловым экраном.

Паяльная станция с инфракрасным подогревом

Нагревателями являются галогеновые лампы, для которых монтируются подключающие разъемы в выбранном металлическом корпусе. Идентичная конструкция собирается для обеих секций, различие только в размерах. Для крепления верхней секции используется штативный или другой механизм с возможностью перемещения. Нагрев контролируется термопарами.

Управление нагревателями происходит при помощи микросхемы Arduino MAX6635, подключаемой к ПК. Основная сложность – найти подходящее ПО.

Это только две идеи для самостоятельной сборки паяльной станции, которые возможно дорабатывать или предлагать новые. Творческий подход и умелые руки избавят радиолюбителей от дополнительных финансовых трат и обеспечат их удобными инструментами для работы.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector