0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обслуживание необслуживаемых СВО

Содержание

Обслуживание необслуживаемых СВО

Есть класс устройств для охлаждения процессоров — заводские или необслуживаемые системы водяного охлаждения. Но необслуживаемые они не потому что их не надо обслуживать, а потому что такие работы производителем не предусомтрены. Тем не менее не бывает таких водяных систем которые на самом деле не требуют обслуживания. И у меня есть СВО которая была моей основной системой охлаждения последние 2,5 года.

И настало время сменить в ней жидкость и промыть водяной контур от загрязнений. Подобные работы нужны не только в заводских, но и в кастомных системах.

Суть в том, что со временем происходит коррозия металлов, и алюминия и меди, из отделившихся частиц образуется осадок. Вдобавок антикоррозионные присадки в жидкости со временем теряют свои свойства, а порой также выпадают в осадок. И весь этот осадок забивает микроканальную систему водоблоков.

Забивание микроканалов ухудшает эффективность отвода тепла, вдобавок увеличивается сопротивление потоку жидкости, что также ухудшает работу системы охлаждения.

И в этой статье я распишу опыт по разборке, промывке, заправке и сборке обратно необслуживаемой СВО от Enermax.

Разборка и слив жидкости

На корпусе водоблока есть специальное отверстие для залива жидкости, но, к сожалению, через него не получиться промыть систему, да и слить жидкость будет сложно, так как при сливе нужно чтобы заходил в систему воздух, а когда на запуск воздуха и на слив отверстие одно и маленькое — процесс будет идти плохо.

Отверстие для заливки жидкости с установленным винтом

Так что откручиваю просто все винты, что только видны снаружи.

Сняв медную пластину с микроканалами сразу видно, что проблема забивания микроканалов уже начала проявляться. забит далеко не весь водоблок, так что на эффективности работы это ещё не так сильно сказывается, тем не менее — забивание — это вопрос времени.

Нажмите для увеличения

Стоит сказать, что перед разбором я повернул систему так чтобы воздушный пузырь, который есть в контуре поднялся к водоблоку. Чтобы понять как надо крутить СВО, чтобы поднять пузырь к водоблоку стоит разобраться с тем как устроен радиатор. И в закрытых СВО всё равно должен оставаться небольшой объём воздуха, иначе будут проблемы с тепловым расширением теплоносителя при работе, и если воздух не оставить, то при нагреве просто выдавит какие-то из уплотнителей или порвёт трубки.

Радиатор состоит из Трёх ресиверов, которые соединены друг с другом плоскими трубками. Один ресивер крупный — находиться со стороны противоположной отверстиям под штуцера и объединяет все плоские трубки. Два остальных ресивера находятся со стороны со штуцерами.

И каждый соединяется с половиной всех плоских трубок.

Если заглянуть в отверстие под штуцер в радиаторе — то можно увидеть концы плоских трубок (это не фото, а компьютерная реконструкция)

Соответственно жидкость движется змейкой, проходя один поворот. И когда перемещаете пузырёк воздуха надо представлять то где он находиться чтобы привести его в водоблок.

После снятия пластины с микроканалами — я слил жидкость в емкость в которой есть хоть какая-то градуировка.

Она нужна для того чтобы оценить объём жидкости который нужно будет в дальнейшем залить. Не знаю какого цвета жидкость была изначально, но стала она мутно рыжей. Вдобавок через некоторое время на дне ёмкости скопился осадок.

Дальше, после снятия пластины с микроканалами я водоблок разбирать полностью не стал так как для этого пришлось бы вытаскивать поворотные фитинги и уверенности в многоразовости установки их у меня нет. Но если кому-то это важно — для их демонтажа надо выкрутить два маленьких винта, которые зачиковывают фитинги от случайного вырывания.

А сама внутренняя часть водоблока из корпуса вытаскивается если выкрутить 4- винта. Выкрутив их можно даже было чуть сдвинуть внутренний корпус, но трубки не давали вытащить его полностью. А полностью я хотел разобрать чтобы можно было лучше промыть все детали и не бояться за то что затоплю электронику.

Как вам боке на LG (Google) Nexus 5X?

Промывка

Суть промывки заключается в заправке системы водой, а затем слива жидкости. Действия повторять необходимо до тех пор пока не перестали вымываться крупные хлопья загрязнений. Точное количество раз не считал, но было сделано что-то около 5-6 промывок.

Далее необходимо просушить ту часть где есть электроника. Для этого я использовал штатные вентиляторы СВО, а так как внутренностей было не видно — то для сравнения испарения жидкости поставил ещё и ёмкость которую почти полностью закрыл от проточного проветривания воронкой.

Её внутренности высохли минут через 15, водоблок я прослушивал около часа. но далее я ещё заметил, что на самом деле можно было снять декоративные части корпуса, и снять их можно без разборки водоблока просто поддев за края металлические и пластиковые панельки.

Благодаря этому стало возможным ещё определить какие из отверстий водоблока сообщаются с блоком электроники, чтобы понимать куда нельзя лить жидкость при заправке контура. И отверстие которое сообщается с частью с электроникой оказалось только одно. На время заправки я его заклеил изалентой, и чтобы наверняка — синей.

Заправка контура

И далее началась самая ответственная часть. Я подготовил жидкость количество которой было чуть больше, чем я слил из системы, чтобы точно хватило.

Так поднимем же с вами бокалы за долголетие наших помп и благополучие подшипников!

Чтобы проще было залить жидкость опять же надо соблюдать такое правило, что в одно отверстие заливается вода, а второе — должно выпускать воздух. Для того чтобы понять что куда течёт нужно понять конструкцию системы циркуляции жидкости. Она в водоблок поступает из центрального отверстий, далее по силиконовой вставке течёт в бок, распределять специальными столиками в корпусе, далее корпус разворачивает поток жидкости вверх на микроканалы водоблока, и после микроканалов жидкость уходит вбок, и проходит вглубь одной из сторон корпуса.

Заливать можно было либо в центр, и оставлять для выхода воздуха отверстие в глубине — либо можно было заливать в боковое отверстие в глубине корпуса. Штатное отверстие через которое в заводских условиях заправлялась система расположено именно у бокового отверстия, так что и я решил заливать в него. Если при заливки вы видите что жидкости осталось у вас ещё много, а вода не уходит, значит где-то образовалась воздушная пробка и надо покрутить радиатор чтобы собрать воздух вместе и чтобы он смог выйти наружу. Так же важно размещать место заливки выше радиатора, так как без принудительного движения потока — воздух можно выпустить только заполняя все части контура по принципу сообщающихся сосудов. У меня в систему поместился и подготовленный излишек жидкости. Но я решил часть жидкости удалить путём впитывания в салфетку чтобы привести уровень к тому, что был при разборке системы. При разборке — уровень воды не заполнял пространство над силиконовым вкладышем. Далее я собрал СВО в последовательности обратной разборке. Включил — стал ждать пока помпа прогонит все пузыри в контуре в один большой и он где-то задержится в ресиверах радиатора как это происходит и по заводу.

Но я ждал-ждал, а заветного прекращения разбивания воздуха о крыльчатку помпы так и не произошло. То есть воздуха было слишком много и он не мог занять какое-то положение, в котором его не уносило жидкостью. Для дозаправки я открыл заливное отверстие, но так как у меня нет шприцов с иглами, то я дозаправлял контур просто заливая жидкость в цековку под головку винта.

Естественно в таких условиях воздух выходил по мелкими пузырями очень долго, и делалась такая заправка уже на включенном СВО, то есть помпа активно перемешивала пузыри и часть из них выходило. Естественно тут так же надо держать сборку так чтобы отверстие для заправки было высшей точкой контура, иначе из него будет литься вода. Минут 10 выходил воздух и я периодически по каплям заполнял углубление под винт. В определённый момент я ещё раз попробовал дать системе собрать воздух в каком-то одном месте. Для этого я закрутил заливной винт на место и на рабочей системе покрутил СВО, на видео я это не снял, так как для этого требуется больше пространства, что у меня было для съёмки. Но делать надо примерно тоже самое что и, например, для калибровки магнитометров смартфона. То есть покрутить систему вокруг всех осей. А дальше дать минут 10 поработать. Если звук разбивания пузырей прекратился, и в радиаторе не будет звуков журчания воды — значит вы добились требуемого уровня жидкости и на этом процесс обслуживания СВО завершается.

Что касается этой системы водяного охлаждения, то в ней очень тихая помпа, тише, чем работа даже медленных 5400 жёстких дисков, и за 2,5 года это ничуть не изменилось. Вентиляторы тоже не требуют ещё никакого участия в дальнейшей эксплуатации. От этого предполагаемая одноразовость системы — кажется ещё более обидной, так как если бы не сейчас, то в скором времени она бы точно уже потребовала обслуживания. То есть нормально бы она проработала 3-4 года. Это, конечно, больше чем гарантийный срок, но всё равно вдвое ниже, чем ресурс работы подшипника помпы заявленный в 50 тысяч часов. А повторюсь — помпа тут крайне тихая, её вообще практически не слышно, и за эту тишину заплачено полностью при покупке, а не за половину. И подобная проблема характерна для всех заводских СВО. В целом — полагаю для большинства заводских систем охлаждения процедура обслуживания выглядеть будет примерно так же. Единственное — заливные отверстия в некоторых моделях бывают расположены на радиаторе, и тот долив что я делал через водоблок вам нужно будет делать через отверстие в радиаторе. Сложного в этой процедуре ничего нет. Тем более в процессе промывки вы неплохо натренируетесь в умении заправлять именно ваш водоблок, разберётесь куда надо заливать чтобы воздух эффективно выходил, как болтать чтобы воздушные пробки выходили и т.д. В общем — ничего страшного в этой процедуре нет. В целом — не сложнее, чем установить кулер, но гораздо дольше, если давать время на высыхание электроники.

Читать еще:  Простой цифровой амперметр до 10А за 5 минут

Установка водяного охлаждения

1. Подготовка инструментов

Для успешной установки системы охлаждения вам понадобятся инструменты. Мы остановили свой выбор на чрезвычайно удобном швейцарском ноже Victorinox Cyber Tool Nr. 34. В него кроме самого ножа входят клещи, ножницы, маленькая и средняя крестообразная отвертка, а также набор насадок. Кроме того, приготовьте гаечные ключи на 13 и 16. Они потребуются для затягивания соединений.

2. Подготовка радиатора

В цикле охлаждения радиатор обеспечивает стабилизацию температуры воды, как правило, на уровне порядка 40° C. Теплообменнику помогают один или два 12-сантиметровых вентилятора, которые вращаются довольно тихо, но при этом обеспечивают вывод тепла изнутри наружу. При установке вентилятора следите за тем, чтобы стрелка на раме вентилятора показывала в сторону радиатора, а также чтобы провода питания сходились к середине.

3. Монтаж радиатора на боковую стенку

Пора прикрутить к радиатору угловые соединительные элементы для трубок. Для надежности затяните накидные гайки ключом на 16. Затягивайте крепко, однако не до упора. После этого радиатор монтируется к корпусу. Single-радиатор (то есть только с одним вентилятором) можно установить снизу за передней панелью, в том месте, где обеспечивается штатная подача воздуха. В некоторых типах корпусов для этого также может подойти пространство сзади процессора.

Наш двойной dual-радиатор требует несколько больше места, поэтому мы его располагаем на боковой стенке. Самостоятельно делать необходимые гнезда и отверстия мы рекомендуем только опытным умельцам. Если вы себя к таковым не относите, лучше всего воспользоваться специально предусмотренным корпусом для конкретного типа охлаждения. Innovatek предлагает системы охлаждения в комплекте с корпусом — при желании даже в смонтированном состоянии. Для нашего проекта мы выбрали модель Silverstone TJ06 с подготовленной Innovatek боковой стенкой.

Рисунок A: Расположите боковую стенку перед собой на рабочем столе так, чтобы отверстия под вентиляторы были направлены на вас узкими частями. После этого положите радиатор на отверстия вентиляторами вверх. Угловые соединения шлангов должны быть направлены в ту сторону, которая позже будет соединена с передней панелью корпуса. Теперь поверните боковую стенку вместе с радиатором и соедините отверстия, сделанные на корпусе с резьбой на радиаторе.

Рисунок B: Для красоты положите на гнезда вентиляторов сверху две черные заглушки и прикрутите их восемью прилагающимися черными шурупами Torx.

4. Обеспечение радиатора питанием

Стандартный вентилятор питается от напряжения 12 В. При этом он достигает указанной в спецификации скорости вращения и, таким образом, максимальной громкости. В системе водного охлаждения часть тепла поглощает кулер радиатора, поэтому 12-
вольтное питание для пары наших вентиляторов, пожалуй, не понадобится. В большинстве случаев достаточно 5-7 В — это позволит сделать систему практически бесшумной. Для этого соедините разъемы питания обоих вентиляторов и подключите к прилагающемуся адаптеру, который позже будет подключен к блоку питания.

5. Установка водного кулера на графическую плату

Теперь речь пойдет о графической плате, главном источнике шума у большинства компьютеров. Мы оснастим водным охлаждением модель ATI All-in-Wonder X800XL для PCI Express. Аналогичным образом система охлаждения устанавливается и на другие модели видеоадаптеров.

Прежде чем вы приступите к сборке, еще два замечания. Первое: с переоборудованием графической платы теряет силу гарантия, поэтому перед установкой проверьте работоспособность всех функций устройства. И второе: человек при хождении по ковру заряжается статическим электричеством и разряжается при соприкосновении с металлом (например, дверной ручкой).

Если вы разрядитесь о графическую плату, при определенном стечении обстоятельств она может приказать долго жить. Поскольку же у вас, как и у большинства непрофессиональных сборщиков, вряд ли имеется антистатический коврик, кладите видеоадаптер только на антистатическую упаковку и периодически разряжайтесь, касаясь батареи отопления.

Рисунок А: Для того чтобы отсоединить вентилятор от выбранной нами модели серии Х800, необходимо открутить шесть шурупов. Два маленьких шурупа, удерживающие натяжную пружину, оптимизируют давление блока охлаждения на графический процессор, в то время как четыре остальных несут на себе всю тяжесть кулера. Даже после того как будут удалены все шесть шурупов, кулер будет все еще достаточно крепко присоединен теплопроводящей пастой. Отсоедините кулер, плавно поворачивая его по и против часовой стрелки.

Рисунок B: После того как вы снимите старую систему охлаждения, удалите остатки теплопроводящей пасты с графического процессора и других микросхем. Если паста не стирается, можно использовать немного жидкости для снятия лака. Естественно, и водная система охлаждения нуждается в теплопроводной пасте, так что нужно нанести новую. Здесь основное правило таково: чем меньше, тем лучше! Маленькой капельки, распределенной тонким слоем по поверхности каждой детали, вполне достаточно.

На самом деле теплопроводная паста является достаточно посредственным проводником тепла. Она призвана заполнять микроскопические неровности поверхности, так как воздух проводит тепло еще хуже. Для нанесения пасты в качестве миниатюрного шпателя можно использовать старую визитную карточку.

Рисунок С: После нанесения пасты положите новый кулер на рабочую поверхность таким образом, чтобы соединительные трубки были сверху, и совместите отверстия на графической плате с резьбой на блоке охлаждения. Натяжная пружина заменяется квадратной пластмассовой пластиной. Для защиты окружающих контактов наклейте между печатной платой и пластиной, точнее говоря, непосредственно к 3D-процессору, пенопластовую прокладку.

Новый кулер удерживается на трех несущих шурупах. Сперва затяните их, причем, как и при замене автомобильного колеса, вначале затягивайте шурупы не до конца, и затем по очереди их подтягивайте. Это поможет избежать перекосов. После этого аналогичным образом затяните шурупы на пластмассовой пластине.

6. Установка водного кулера на процессор

Наибольшее количество тепла чаще всего вырабатывает центральный процессор. Поэтому система охлаждения, защищая его от перегрева, работает достаточно шумно. Заменить воздушный кулер на водный достаточно просто. Сначала осторожно снимите с процессора воздушный кулер. Преодолевать сопротивление термопасты также необходимо мягкими вращательными движениями влево-вправо, иначе процессор может выскочить из сокета. После этого удалите всю старую термопасту.

Затем отвинтите имеющуюся рамку сокета и смонтируйте вместо нее подходящую для этого типа процессора рамку из набора водного охлаждения. Перед установкой кулера нанесите на процессор тонким слоем термопасту. В завершение зафиксируйте крепежные скобы с обеих сторон рамки сокета и перекиньте фиксатор.

7. Установка насоса

Насос — очень важная деталь системы, поэтому его необходимо поставить на пьедестал — в прямом смысле этого слова. Для этого ввинтите в алюминиевую плату четыре резиновые ножки. Резина здесь используется для того, чтобы изолировать вибрации насоса. На эти ножки установите насос и зафиксируйте его четырьмя прилагающимися шайбами и гайками. Гайки затяните небольшими плоскогубцами.

Теперь необходимо оснастить насос и компенсационную емкость соединительными трубками. Затяните для надежности соединения ключом на 13. В завершение подсоедините компенсационную емкость с округлой стороны насоса. Насос приделывается изнутри к передней панели корпуса, прилагающейся клейкой лентой таким образом, чтобы компенсационная емкость «смотрела» наружу (см. рис. 11).

8. Соединение элементов системы шлангами

После завершения установки всех компонентов внутри корпуса необходимо соединить их шлангами. Для этого поставьте открытый корпус напротив себя и положите перед ним боковую стенку с радиатором. Шланг должен идти от компенсационной емкости к графической плате, оттуда к процессору, от процессора к радиатору, завершается же круг соединением радиатора и насоса.

Отмерьте необходимую длину устанавливаемого шланга и ровно отрежьте его. Открутите на соединении накидную гайку и подведите ее к концу надеваемого шланга. После того как шланг надет на соединение вплоть до резьбы, зафиксируйте его накидной гайкой. Затяните гайку ключом на 16. Теперь ваша система должна выглядеть так, как это показано на рисунке 11.

9. Подготовка насоса к заполнению водой

Как это показано на нашей картинке, подключите насос к разъему питания для жестких дисков. На данном этапе к блоку питания не должно быть подключено больше ничего. Сейчас мы готовим насос к заполнению водой. Другие компоненты нельзя подключать без воды в системе охлаждения, иначе им грозит мгновенный перегрев.

Так как блоки питания не работают без подключения к материнской плате, необходимо использовать прилагающуюся перемычку. Черный провод служит для «обмана» питания материнской платы. Таким образом, после включения тумблера насос начнет работать. Если у вас под рукой не нашлось перемычки, закоротите зеленый и находящийся рядом черный провода блока питания (пины 17 и 18).

10. Наполнение водой компенсационной емкости

После того как насос запущен, его можно наполнить. Для этого используйте прилагающуюся жидкость из набора. У Innovatec это дистиллированная вода со специальными химическими добавками, позволяющими сохранять воду свежей практически бесконечно.

В крайнем случае можно использовать и обычную дистиллированную воду, однако тогда придется ее менять приблизительно каждые два года. Внимание: ни в коем случае не используйте воду из под крана! Она содержит большое количество бактерий, которые моментально образуют в вашей системе колонии и ощутимо снизят эффект охлаждения.

Наполните компенсационную емкость жидкостью до нижнего края резьбы и подождите, пока насос выкачает воду. Продолжайте процедуру наполнения до тех пор, пока в системе не прекратится бурление.

11. Завершение работы и пробный пуск

Проверьте герметичность соединений. Если на каком-либо из них образуется капелька, скорее всего, это значит, что плохо затянута накидная гайка. Если система наполнена достаточным количеством воды, но продолжается бурление, поможет следующая хитрость: возьмите двумя руками боковую стенку корпуса с радиатором и покачайте ее так, как будто это сковородка, по которой вы хотите распределить горячее масло. Если после 15 минут работы все соединения остались сухими и не возникло никаких посторонних звуков, закройте компенсационную емкость.

Теперь можно снять перемычку с блока питания и начать подключение компонентов компьютера. Некоторой сноровки потребует установка боковой стенки с радиатором. Зазоры здесь очень малы, и даже слегка неверно установленное шланговое соединение может помешать. В этом случае необходимо просто повернуть соединение в нужном направлении. Также при закрытии корпуса уделите особое внимание шлангам, чтобы ни один из них не был перегнут или сдавлен.

12. Водное охлаждение для продвинутых пользователей

Кроме процессоров и графических плат можно также оснастить водным охлаждением чипсет и высокоскоростной жесткий диск. А вот охлаждать водой блок питания мы не рекомендуем. Ни один из них не является достаточно надежным для этого — воде там не место. При желании снизить шумность блока питания можно установив в компьютере БП с пассивным охлаждением.

В водной системе следует избегать флуоресцентных добавок: есть подозрение, что они вызывают коррозию металла. Если вам не нравятся даже медленно вращающиеся вентиляторы, вновь поможет только пассивный радиатор. Его можно поместить либо на подставку рядом с корпусом, либо при наличии соответствующих навыков прикрепить к внешней стороне корпуса.

Читать еще:  Самодельные аквариумы и приспособления для них

Компоненты водяного охлаждения

Если вы думали что сборка своего ПК была сложной, у меня для вас плохие новости. Для сборки системы водяного охлаждения вам понадобятся: корпус, трубки, радиатор(ы), процессорный блок, блок для видеокарты, панель на плату видеокарты, резервуар(ы), помп(ы), компрессионные фитинги, угловые фитинги, запорные клапаны, охлаждающая жидкость и вентиляторы. С тех пор как вы решили сделать водяное охлаждение самому — будьте готовы раскошелиться. Красота требует жертв.

Процессорный блок

Пожалуй, самый важный компонент системы водяного охлаждения для компьютера. Убедитесь в том, чтобы блок был совместим с вашим процессором. Хотя, иногда этим можо пренебречь, т.к по размеру чипы от Intel и AMD практически не отличаются. Популярный вариант — Corsair H110.

Блок для видеокарты

Тут тоже нужно убедится о совместимости вашей карты с блоком охлаждения. Есть производители, например EKWB, которая выпускает блоки охлаждения, разработанные специально для карт серий Windforce от Gigabyte, Strix от ASUS, Lightning от MSI.

Блок для оперативки

Охлаждать ли оперативную память или нет — ваш выбор. Обычно дорогие планки идут уже с красивыми радиаторами, и лично я не вижу смысла в водяном охлаждении оперативной памяти. И никто вас не накажет, если все что вы собираетесь охлаждать подобным образом — лишь процессор и карта.

Фитинги

Система водяного охлаждения для компьютера требует закрепления трубок фитингами. Это наиболее важная часть системы. В зависимости от того, какую трубки вы выбираете, вам понадобятся либо компрессионные фитинги, либо акриловые фитинги. Если не хотите заморачиваться, можно просто взять стандартные.

Однако, если вы сторонник эстетики и прямолинейности, можно докупить те же угловые фитинги, как правило на 45 или 90 градусов. Кроме того, стопорный клапан может пригодиться для обслуживания.

Помпы и резервуары

Технически, вам не нужно покупать резервуар, чтобы успешно работать с водяным охлаждением. Тем не менее, они выглядят довольно впечатляюще, и так намного легче заполнять систему с водяным охлаждением по сравнению с другими методами.

Однако вам всегда понадобится насос, чтобы гарантировать, что жидкость в вашей системе переливается, отводит тепло от ваших основных компонентов и выходит к радиаторам.

Радиаторы и постоянное давление

Система водяного охлаждения для компьютера требует хорошей организации внешнего охлаждения помимо самих водяных трубок и насосов.

На этом этапе нам нужно узнать, как отводить накопившееся тепло. Единственный вариант — использование радиаторов. Можно сделать это как вам нравится, используя отдельные узлы для ваших видеокарт и процессоров или комбинируя их в одну систему.

Радиаторы же по прежнему необходимы , дабы избавиться от всего этого тепла, а так же соответствующие вентиляторы, чтобы это все выдувать. После того, как вы решите, сколько радиаторов позволяет разместить ваш корпус и сколько вы собираетесь использовать, вам нужно ближе познакомиться с понятием FPI и толщиной радиаторов, которые вы будете использовать.

FPI означает ребро на дюйм. По сути, чем выше FPI, тем выше постоянное давление, которое вам понадобится для эффективного перемещения холодного воздуха через этот радиатор.

Например, если у вас есть радиатор с 38 FPI , вам вероятно, понадобятся вентиляторы с оптимизацией давления. Однако, если у вас более глубокие радиаторы с меньшим FPI, равным 16, вы не увидите никакой сопоставимой разницы между вентиляторами постоянного давления или вентиляторами, использующими потоки воздуха. В этих случаях лучше оснащать радиаторы классическими кулерами.

Шаг 3: Подготовка к установке

Как только вы получите все детали, прочтите руководства к ним. Я никогда не читаю мануалы, но касаемо охлаждения, есть некоторые моменты, которые могут действительно испортить вашу установку, если вы не обратите на это внимание.

После того, как вы это сделаете, вам нужно сделать промывку. Когда детали изготавливаются, на них остаются масла, грязь и другие вещи. Если вы просто запустите свою установку таким образом, то по вашим трубкам и деталям будет течь грязь, и система начнет засоряться.

Возьмите часть своей трубки, обрежьте ее и подключите к одному концу радиатора. Возьмите воронку и пропустите через нее галлон дистиллированной воды. Для лучшего эффекта вы можете подогреть воду. Затем разберите водяной блок, это должно быть довольно просто — открутите несколько винтов. Возьмите немного спирта и протрите все закоулки вашего блока.

Кому нужно водяное охлаждение?

Большинство обычных пользователей не нуждается в водяном охлаждении.

Даже игровой ПК чаще всего не требует водяного охлаждения — достаточно обычного башенного кулера. Дело в том, что даже дорогой процессор в игровом ПК обычно не выделяет так много тепла, сколько покрывает водяное охлаждение. Потенциал дорогой системы охлаждения не будет использоваться.

Тем не менее, есть ситуации, без которых водяное охлаждение — это необходимость. Речь идет о дорогом и производительном сегменте, в котором встречаются процессоры с парой десятков ядер. У процессора с большим количеством ядер и суффиксом XE тепловыделение может превысить 350 Вт — воздушное охлаждение просто не справится.

Тоже самое касается и разогнанных процессоров — тепловыделение увеличивается и всей системе требуется серьезное охлаждение. Если в вашем ПК и производительная видеокарта. и разогнанный процессор, то вся система получится очень горячей — есть вероятность, что воздушное охлаждение будет недостаточно эффективно.

Также водяное охлаждение актуально тем, кто готов переплатить за тихую работу ПК. В водяном охлаждении тоже используются вентиляторы, но необходимую мощность можно подобрать более габаритным радиатором. В итоге система будет тише, чем башенный кулер при схожем теплопакете.

Давайте перейдем к конкретным моделям. Сами модели систем водяного охлаждения отличаются от друг друга незначительно. Основное отличие заключается в количестве вентиляторов.

Если вам нужно водяное охлаждение с одним вентилятором, подойдет Cooler Master MasterLiquid ML120L RGB MLW-D12M-A20PC-R1.

Отдельно отметим модель Cooler Master MasterLiquid ML120R RGB MLX-D12M-A20PC-R1 — эта односекционная система с двумя вентиляторами.

Большинство моделей оснащены двумя вентиляторами. Вы можете выбрать из следующих похожих моделей:

Также в каталоге представлена одна модель с тремя вентиляторамиCooler Master MasterLiquid ML360R RGB MLX-D36M-A20PC-R1.

Все перечисленные выше модели поддерживают подключение 4-pin + 3-pin и большинство распространенных сокетов:

INTEL: LGA 1150/1151/1155/1156, LGA 1356/1366, LGA 2011/2011v3/2066;

AMD: AM2/AM2+/AM3/AM3+/AM4/FM1/FM2/FM2+.

Системы водяного охлаждения несколько сложнее в установке, чем воздушного. Тем не менее, если ориентироваться на официальные гайды от производителя, эта задача тоже не займет много времени

  • Все посты
  • KVM-оборудование (equipment)
  • Powerline-адаптеры
  • Безопасность (security)
  • Беспроводные адаптеры
  • Блоки питания (power supply)
  • Видеокарты (videocard)
  • Видеонаблюдение (CCTV)
  • Диски HDD и твердотельные SSD
  • Дисковые полки (JBOD)
  • Звуковые карты (sound card)
  • Инструменты (instruments)
  • Источники бесперебойного питания (ИБП, UPS)
  • Коммутаторы (switches)
  • Компьютерная периферия (computer peripherals)
  • Компьютеры (PC)
  • Контроллеры (RAID, HBA, Expander)
  • Корпусы для ПК
  • Материнские платы для ПК
  • Многофункциональные устройства (МФУ)
  • Модули памяти для ПК, ноутбуков и серверов
  • Мониторы (monitor)
  • Моноблоки (All-in-one PC)
  • Настольные системы хранения данных (NAS)
  • Ноутбуки (notebook, laptop)
  • Общая справка
  • Охлаждение (cooling)
  • Планшеты (tablets)
  • Принтеры (printer)
  • Программное обеспечение (software)
  • Программное обеспечение для корпоративного потребителя
  • Проекторы (projector)
  • Процессоры для ПК и серверов
  • Рабочие станции (workstation)
  • Расширители Wi-Fi (повторители, репиторы)
  • Роутеры (маршрутизаторы)
  • Серверы и серверное оборудование
  • Сетевые карты (network card)
  • Телекоммуникационные шкафы и стойки
  • Телефония (phone)
  • Тонкие клиенты (thin client)
  • Трансиверы (trensceiver)

Первый «тестовый» запуск системы водопроводного охлаждения и ПК с неожиданной проблемой

Запуск системы водопроводного охлаждения я, естественно, задокументировал на видео, где, собственно, выяснилась главная проблема всей этой только что собранной системы:

Как вы можете слышать и видеть: видеокарта оказалась трупом. И нет, я не сколол ей кристалл, когда устанавливал водоблок. Просто этот Sapphire Radeon HD 2600 Pro я вытащил когда-то из сгоревшего компьютера и, так как на ней вращался кулер при подключении к тестовой материнской плате, я предварительно посчитал ее «живой». И на этом, собственно, испытания системы водопроводного охлаждения завершились — покупка экспериментальной видеокарты «в сделку не входила», да и у меня кончилась годная термопаста, а осталось лишь два тюбика бесполезной КПТ-8, которую использовать в экспериментах — просто кощунство.

Самое главное: такая кустарная система водопроводного охлаждения оказалась рабочей, пусть мы и не проверили ее эффективность в разгоне. А, жаль — я планировал хорошенько разогнать систему и проверить ее в моем любимом бенчмарке «Зова Припяти».

Но не стоит отчаиваться, продолжение экспериментов с водопроводным охлаждением обязательно будет, как только я раздобуду практически любую видеокарту, которую в случае чего было бы не жалко, если она падет в оверклокинге отправиться в Вальгаллу из-за прорвавшего водоблока (моя GTX 260 подошла бы просто идеально). И, конечно, потенциал 939 сокета — это хорошо, но очень хотелось бы отыскать систему на 775 сокете (или хотя бы на 478), потому что водопроводное охлаждение чипсета — это не совсем подходящее применение для водоблока, пусть и выглядящее эффектно.

Система водяного охлаждения ASUS ROG RYUO 240

ASUS ROG RYUO 240 представляет собой необслуживаемую систему водяного охлаждения процессора с цветным OLED-дисплеем, синхронизируемой подсветкой Aura и 240-миллиметровыми вентиляторами ROG на радиаторе.

Мир жидкостного охлаждения за последнее десятилетие изменился, перейдя из эпохи сложных индивидуальных решений в эру доступности. В настоящее время системы с жидкостным охлаждением являются обычным явлением, особенно среди продвинутых пользователей — оверклокеров и геймеров. Они также стали более компактными и стильными. Этому яркий пример система водяного охлаждения ASUS ROG RYUO 240.

Технические характеристики ASUS ROG RYUO 240

Размер водяного блока:80 x 80 x 45 мм
Разъемдля процессоров Intel: LGA 115x, 1366, 2011, 2011-3, 2066; AMD: AM4, TR4
Размер радиатора272 x 121 x 27 мм
Материал радиатораалюминий
Трубкарезиновая трубка с рукавами
Вентилятор2 вентилятора ROG RYUO, модель 12
Размер вентилятора120 x 120 x 25 мм
Эксклюзивные особенности1,77″ OLED-дисплей.
AURA Sync

Компания ASUS является довольно новым игроком на рынке жидкостного охлаждения All-In-One (AIO). Однако уже сейчас ею выпущено четыре новых высококлассных продукта, которые различаются размерами радиаторов (от 120 мм до 360 мм) для их новых линеек Ryuo и Ryujin. Если посмотреть на заднюю часть коробки ASUS ROG RYUO 240, то там демонстрируются ключевые функции системы, такие как 1,77-дюймовый OLED-дисплей, поддержка Aura Sync с подсветкой RGB, использование собственных 120-мм вентиляторов ROG серии и верхняя алюминиевая верхняя крышка насоса. После того, как вы откроете коробку, вы обнаружите, что каждый компонент находится в защитном покрытии, гарантируя, что каждый блок будет доставлен неповрежденным и без каких-либо царапин или нежелательных отметок. Внутри коробки находятся кронштейны
2×120 мм ROG для вентилятора, USB-кабель для управления программным обеспечением, а также краткое руководство по началу работы.

Ключевые особенности ASUS ROG RYUO 240 — вентиляторы ROG на радиаторе, резиновые трубки длиной 38 см в защитной оплетке, алюминиевый кожух помпы, адресуемые цветные светодиоды, а также цветной OLED-дисплей LiveDash размером 1,77”. Последний можно использовать для контроля температуры, тактовой частоты и других важных данных. Кроме того, этот экран можно применять для добавления собственного логотипа в вашу систему, будь то ваш онлайн-аватар или, возможно, логотип компании. Даже анимация отображается на обоих кулерах!

Глядя на секцию насос/блок AIO, мы ясно видим, что это конструкция Asetek, в которой используется тот же плетеный шланг и монтажная пластина, что и в других современных кулерах Asetek, хотя различия возникают при взгляде на маркировку ROG, размещение светодиодов и включение OLED-экрана. Мы также видим, что насос питается от разъема SATA и что блок включает в себя ШИМ-подключения для обоих 120-мм вентиляторов блока. ASUS ROG RYUO 240 поддерживает все современные разъемы Intel (LGA 1150/1/5/3, LGA 1366, LGA 2011-3 и LGA 2066), а также разъемы AMD AM4 и TR4. Следует отметить, что монтажный кронштейн поставляется в комплекте с процессором TR4, но не в комплекте с ASUS ROG RYUO 240. Оба вентилятора поставляются с короткими кабелями длиной 15 см, что более чем достаточно, чтобы обеспечить чистое подключение к AIO, а также минимизировать загромождение кабелей.

Читать еще:  Изготовление солнечных панелей в домашних условиях

Тестирование

Процессор — Intel Core i7 7700K, материнская плата — Z270, оперативная память — 4х4 Гб 3000 МГц, видеокарта — 2 Гб VRAM, SSD — 512 Гб, операционная система — Windows 10 Home 64-bit.

Stock Temperatures, С (меньше — лучше)

Overclocked Temperatures, С (меньше — лучше)

Stock Acoustics, дБ (меньше — лучше)

Overclocked Acoustics, дБ (меньше — лучше)

Выводы

Основным преимуществом ASUS ROG RYUO 240 является OLED-экран, способный предоставить пользователям полезную информацию или опцию точной настройки, которую можно использовать, чтобы сделать компьютер немного более уникальным. Данная система жидкостного охлаждения легко конкурирует с другими высокопроизводительными 240 мм AIO, а встроенные вентиляторы ASUS предлагают достойные уровни шума и могут быть настроены для создания очень тихой системы. Не забудем также и про RGB-подсветку.

Мы награждаем систему водяного охлаждения ASUS ROG RYUO 240 медалью «Выбор редакции».

Почему эффективность СЖО выше, чем у воздушного кулера

Эффективность СЖО достигается за счет того, что скорость теплоотвода с помощью движущегося жидкого теплоносителя намного выше, чем скорость естественного теплоотвода с помощью теплопередачи внутри металлического радиатора.

Скорость отвода тепла зависит не только от скорости движения жидкости, но и от теплоемкости жидкости, площади радиатора. В среднем СЖО обеспечивают примерно в три раза лучший теплосъем по сравнению с обычным воздушным охлаждением, в переводе на градусы это означает падение температуры на 15–25 градусов по сравнению с воздушным охлаждением при нормальной комнатной температуре.

Устанавливаем герметичную систему жидкостного охлаждения

Новейшее поколение герметичных жидкостных кулеров издает меньше шума, экономит место и монтируется быстрее по сравнению с традиционными воздушными вентиляторами. В статье рассказывается, как самостоятельно установить систему жидкостного охлаждения.

Loyd Case. How to Install a Sealed Liquid Cooler. PC World, July 2012, c. 84.

Хотите повысить производительность ПК на несколько ступеней? Хорошая система жидкостного охлаждения отводит тепло от процессора эффективнее воздушного вентилятора и издает значительно меньше шума.

Многие энтузиасты вот уже на протяжении долгих лет используют в своих компьютерах системы жидкостного охлаждения. В прошлом с монтажом подобных систем — прокладыванием трубопровода — мало кому хотелось связываться. Системы старшего класса состояли из нескольких соединительных трубок, которые требовалось правильно состыковать друг с другом, а резервуар нужно было заполнить охлаждающей жидкостью. В случае ошибки подтекание или выплескивание жидкости могло привести к непоправимым последствиям.

Адаптируемые охлаждающие системы старшего класса по-прежнему остаются единственным способом снизить температуру сразу всех компонентов ПК, включая графические платы и даже жесткие диски. Но если вам требуется добиться лишь более эффективного отвода тепла от процессора, обратите внимание на новые герметичные системы, зачастую способные превзойти даже самые мощные воздушные вентиляторы.

Antec Kühler H2O 620 — эффективная и относительно недорогая система жидкостного охлаждения

Зачем проводить модернизацию?

Если вы привыкли к типовым вентиляторам, которыми комплектуют процессоры производства Intel и AMD, то и такой вариант вполне имеет право на существование. Но что делать, если вы приобрели процессор без охлаждающего вентилятора? Рассмотрите покупку стандартной комбинированной системы охлаждения по цене до 600 руб. и дешевле. В этом случае процессор будет греться чуть сильнее и чуть выше окажется уровень шума. Несколько дороже (от 1000 до 3000 руб.) вам обойдется воздушный вентилятор старшего класса. Большинство из них работают тише стандартных устройств, но оказываются значительно более громоздкими. И хотя они достаточно эффективно охлаждают процессор, циркуляция потоков воздуха (особенно внутри компактных корпусов типа «мини-башня») при этом затруднена. Из-за этого ключевые компоненты — графические платы, дисковые накопители и даже элементы системной платы — нагреваются сильнее.

Но есть еще и герметичные системы жидкостного охлаждения. В их состав входит маленький насос, помещенный в компактный водоблок. Герметичное заводское соединение связывает трубки водоблока с радиатором, благодаря чему вам самим не придется наливать и заменять охлаждающую жидкость. Насос будет перекачивать ее из резервуара в радиатор. Устройство оборудовано гибкими и прочными трубками. Чтобы нарушить их герметичность, потребуется довольно серьезное усилие.

Радиатор размещается в имеющемся в большинстве корпусов ПК стандартном гнезде для вентилятора (обычно диаметром 120 мм), который отводит избыточное тепло. Некоторые модели старшего класса оснащены сразу двумя вентиляторами, что улучшает циркуляцию воздуха и повышает эффективность системы охлаждения. Но при этом возрастает и уровень шума.

Большинство систем жидкостного охлаждения процессора, относящихся к последнему поколению, устанавливаются очень просто. Зачастую смонтировать их даже легче, чем кулеры старшего класса с воздушным охлаждением. Кроме того, жидкостные системы, занимающие меньше места, отлично подходят к самым разным корпусам. Как правило, вопросы, возникающие в процессе монтажа, связаны в основном с установкой модуля радиатора, а не водоблока.

Перед установкой

Проверьте спецификации. Убедитесь в том, что в корпусе и на системной плате компьютера можно разместить следующие компоненты:

• Вентилятор диаметром 120 мм, который крепится на корпусе и прилегает к радиатору. Обычно он устанавливается на задней стенке системного блока, но иногда в компактных корпусах монтируется на верхней панели. С учетом длины герметичных трубок разместить радиатор на передней панели практически невозможно. В отдельных корпусах вентиляторы прикрепляются к боковой панели, но это может затруднить ее снятие.

• Прижимную пластину, закрепленную на тыльной стороне системной платы. Если в корпусе не вырезано отверстие для ее установки, то системную плату придется снять.

(Примечание Мы рассмотрим установку кулера Antec Kuhler H20 620. Порядок действий при установке модели Corsar H60, которая иным способом крепится к процессору, описан по адресу find.pcworld.com/72931.)

Подготовьте площадку для монтажа. Перед установкой новой системы охлаждения нужно удалить несколько компонентов.

Во-первых, снимите с корпуса вентилятор диаметром 120 мм (если таковой присутствует) и освободите место для радиатора.

Подготовка площадки: если на корпусе есть вентилятор, снимите его, поскольку он занимает место, где в дальнейшем будет размещаться радиатор

Во-вторых, отсоедините имеющийся процессорный кулер. Если установлен стандартный воздушный вентилятор Intel, его демонтаж не вызовет никаких затруднений. Шлицевой отверткой проверните защелки на пол-оборота против часовой стрелки и поочередно осторожно тяните их на себя, пока не почувствуете, что они вышли из системной платы. Отсоединив все четыре защелки, снимите процессорный радиатор.

Чтобы снять процессорный кулер, осторожно поверните защелки на пол-оборота против часовой стрелки и выньте их из отверстий

У процессорных систем воздушного охлаждения радиатор может быть оснащен дополнительными поддерживающими пластинами. Прежде чем устанавливать крепление для нового кулера, удалите эти пластины.

Прежде чем установить прижимную пластину системы жидкостного охлаждения, снимите с системной платы пластину, смонтированную на ней ранее

Итак, теперь все готово к монтажу системы жидкостного охлаждения.

Установка Antec Kühler H2O 620

Я устанавливал модель Antec Kühler H2O 620 в систему с процессором Intel Core i7-960 и системной платой на основе чипсета X58. Ранее в этой машине был смонтирован стандартный радиатор производства Intel, и процессор постоянно работал в диапазоне повышенных температур. И хотя он никогда не перегревался, вентилятор при повышении нагрузки начинал сильно шуметь.

Вся процедура включает пять этапов.

1. Поместите прижимную пластину на предназначенное для нее место на тыльной стороне системной платы. Система Kühler поставляется с разными пластинами для процессоров AMD и Intel. В отверстия пластины, предназначенной для сокета Intel 1366, вставьте втулки, в которые впоследствии зайдут винты удерживающей планки.

Квадратная прижимная пластина закрепляется на обратной стороне системной платы

Приклейте прижимную пластину к тыльной стороне системной платы двумя полосками двустороннего скотча.

2. Смонтируйте радиатор на корпусе. Прикрепите монтажными винтами вентилятор к радиатору.

Прикрепите радиатор к корпусу, пропустив монтажные инты через вентилятор

В результате он установится между радиатором и боковой стенкой корпуса. Вентилятор будет размещен таким образом (стрелки на его боковых сторонах указывают направление), чтобы воздух из корпуса выдувался наружу.

3. Прикрутите винтами удерживающее кольцо к прижимной пластине, прилагая минимум усилий. Не нужно туго затягивать винты, достаточно лишь наживить их.

4. Вставьте водоблок Kühler H2O 620, слегка поворачивая, в удерживающее кольцо. Его выступы должны зайти в пазы удерживающего кольца. Затем, держа одной рукой водоблок, аккуратно закрутите все четыре винта, не прилагая усилий. Работайте последовательно. Сделав несколько оборотов, переходите к следующему винту, и так действуйте до тех пор, пока все люфты не исчезнут.

Чтобы правильно закрепить водоблок, закручивайте винты последовательно, переходя от одного к другому, сделав несколько оборотов

(При установке в сокет 2011 системы жидкостного охлаждения Intel RTS2011LC можно поместить водоблок на процессор и вращать отсоединенное от системной платы удерживающее кольцо до тех пор, пока не совпадут пазы и выступы. Потом удерживающее кольцо прикручивается винтами к системной плате.)

При установке удерживающего кольца лишь слегка наживите винты, чтобы в процессе монтажа водоблока вся конструкция оставалась подвижной

5. После установки водоблока и радиатора подключите разъем питания вентилятора к коннектору помпы водоблока через специальный адаптер. Затем вставьте оставшийся разъем питания помпы в гнездо процессорного вентилятора на системной плате. Систему Kühler H2O 620 можно подключать только к гнезду процессорного вентилятора.

Когда установите новые компоненты, вставьте разъем питания в гнездо процессорного вентилятора на системной плате

Смонтировав систему, я протестировал производительность ПК. Со штатным кулером производства Intel температура процессора при отсутствии рабочей нагрузки составляла 55—56 o C. После установки системы жидкостного охлаждения температура уменьшилась до 40 o C, а компьютер стал работать значительно тише.

Выводы

Поскольку охлаждающая система содержит жидкость и имеет подвижные элементы, возникают вопросы в отношении надежности работы, отказов помпы и утечек. Покупателям Antec Kühler H2O 620 предоставляется трехлетняя гарантия. Компания Corsair поставляет систему H60 с пятилетней гарантией. В обоих случаях средний срок службы значительно превышает гарантийный период.

При отказе помпы последствия оказываются примерно такими же, что и при выходе из строя вентилятора обычной воздушной системы охлаждения: процессор перегревается, и компьютер выключается. Какой-либо достоверной информации о частоте утечек мы не обладаем, но я слышал, что иногда жидкость вытекает из трубок и заливает системную плату. Однако, учитывая авторитет корпорации Intel и наличие многих тысяч подобных систем охлаждения, уже введенных в эксплуатацию, можно утверждать, что вероятность подобных протечек невелика. Постарайтесь лишь не перегибать сильно трубки и не размещать их возле компонентов, воздействие которых может привести к утечке жидкости.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector