0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчик тока на датчике холла своими руками по микросхемам

Датчик тока на датчике холла своими руками по микросхемам

При проведении измерений в автомобильной электрике часто приходится снимать осциллограммы величин тока. Другими словами, не просто измерять, а подробно изучать. Классически для таких целей используются токовые трансформаторы или резисторы. Однако последние имеют частотные ограничения и влияют на изучаемую схему. Токовой датчик, основанный на регуляторе Холла, призван решить эту проблему.

Все бы хорошо, но стоят такие датчики недешево. Если же суметь собрать такой вариант своими руками, то можно неплохо сэкономить. Чтобы суметь изготовить модель собственного производства, можно использовать несколько эффективных схем.

Как сделать Левитрон на базе Arduino

Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface.
Калибровка принтера делится на три этапа:

1 Этап. Корректируем плоскость по трем точкам

Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.

Алгоритм настройки:

  1. Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)

    После чего мы увидим все настройки принтера.
  2. Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
    И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
  3. Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
  4. Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
  5. Теперь приступаем непосредственно к настройке наших трех точек.
    Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.

    Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

    Калибровка:

    1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
    2. Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
    3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
    4. Команды:
      G666 R67,7
      M500
      G28
    5. Подгоняем дельта радиус пока наша плоскость не выровняется
    3 Этап. Находим истинную высоту от сопла до столика

    Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
    1 Способ:
    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
    G666 H 235.2
    M500
    G28

    2 Способ:
    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

    Проверенный «бюджетный» вариант

    Вот, что надо предпринять для изготовления такого варианта:

    • в ферритовом кольце пропилить канавку по толщине корпуса;
    • на эпоксидный клей посадить МС;
    • сделать определенное количество витков на кольце (кол-во витков будет зависеть от конкретного напряжения);
    • в итоге получится бесконтактный вариант реле, функционирующий на электромагнитной основе.

    Точность срабатывания такого ДТ и регулярность достаточно высокая. Единственным недостатком схемы можно назвать кол-во витков, определяемых чисто эмпирически. На самом деле расчетов конкретного типа нигде и нет. Приходится определять число витков для конкретного сердечника.

    Как сделать Левитрон на базе Arduino

    Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
    Далее будут рассмотрены основные настройки дельта принтера.
    Для управления и настройки принтера мы используем программу Pronterface.
    Калибровка принтера делится на три этапа:

    1 Этап. Корректируем плоскость по трем точкам

    Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
    Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
    В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

    Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.

    Алгоритм настройки:

    1. Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)

      После чего мы увидим все настройки принтера.
    2. Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
      И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
    3. Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
    4. Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
    5. Теперь приступаем непосредственно к настройке наших трех точек.
      Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.

    Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

    Калибровка:

    1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
    2. Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
    3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
    4. Команды:
      G666 R67,7
      M500
      G28
    5. Подгоняем дельта радиус пока наша плоскость не выровняется
    3 Этап. Находим истинную высоту от сопла до столика

    Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
    1 Способ:
    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
    G666 H 235.2
    M500
    G28

    2 Способ:
    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

    ДТ на эффекте Холла: общий взгляд

    Что такое эффект Холла? Как известно, это явление основано на том, что если поместить в магнитное поле какой-либо полупроводник прямоугольного типа, и пропустить сквозь него напряжение, то на краях материала обязательно возникнет электрическая сила, направленная перпендикулярно магнитному полю.

    Именно по этой причине магнитный датчик принято называть ДХ в честь ученого Холла, которому удалось первым раскрыть этот самый эффект.

    Что дает этот самый эффект в автомобильной электрике? Все просто. Когда к ДХ подносится напряжение, то на краях пластины (она бывает расположена внутри ДХ) возникает разность потенциалов, и дается значение, пропорциональное СМП (силе магнитного поля).

    Таким образом, в автомобильной сфере удалось использовать бесконтактные элементы, значительно лучше показавшие себя на практике, чем детали, оснащенные контактными группами. Последние приходилось регулярно чистить, ремонтировать, менять.

    Бесконтактные ДХ успешно контролируют, например, скорость вращения валов, широко используются в системах зажигания, применимы в тахометрах и АБС.

    Для измерений силы тока в различных электрических цепях с помощью микросхемы АС712 это удается сделать. Эффект Холла в данном случае оказывает неоспоримую помощь. Таким образом, удается изготавливать датчик или регулятор электрического тока на ДХ.

    Подобные датчики позволят измерять силу не только постоянного, но и переменного тока, получать значения в млА.

    Как правило, модуль с микросхемой АС712 функционирует строго от 5В, зато позволяет измерять максимальный уровень тока до 5 А. При этом напряжение должно быть выставлено в пределах значений от 2 квт.

    Вообще, ДТ применяются повсеместно в электротехнике для создания коммуникаций обратной связи. В зависимости от конкретного места функционирования, ДТ классифицируются на несколько видов. Известны резистивные ДТ, токово-трансформаторные, ну и конечно, ДТ на эффекте Холла.

    Нас интересуют ДТ на эффекте Холла. Они еще называются открытыми регуляторами или приборами с выходным сигналом по напряжению. Предназначение их: бесконтактным способом измерять переменный, постоянный и импульсный ток в диапазонах от плюс/минус 57 до плюс/минус 950 Ампер при в.о. 3 млс.

    Выходное напряжение ДТ бывает четко соизмерно вычисляемым параметрам тока. 0-е значение напряжения равняется половинной величине тока питания. Тем самым, диапазон выхода тока составляет 0,25-0,75 В.

    Настройку чувствительности ДТ легко провести методом трансформации числа витков тестируемого проводника по кругу магнитопровода регулятора.

    Корпус ДТ обязан быть устроен из прочного РВТ пластика.

    РВТ пластик – это пластиковый материал, получаемый посредством однородного сваривания.

    Что касается жестких выводов корпуса ДТ, то их бывает 3. Предназначены они для пайки на плату.

    Цепь выхода ДТ – пара комплектарно-биополярных транзисторов. Другими словами, это не что иное, как полупроводниковый прибор, в котором сформировано два перехода, а перенос заряда осуществляется носителями 2-х полярностей или иначе – электронами и квазичастицами.

    ДТ на эффекте Холла бывают также оригинального и неоригинального производства. Первые выделяются привлекательным дизайном, надежны и способны давать высочайшую точность показаний. А вот ДТ неоригинального производства таких параметров не имеют, хотя тоже способны предоставить свои преимущества. К ним относится разборный корпус и низкая стоимость.

    Внимание. Если ДТ легко разбирается путем вывинчивания 4-х винтиков, то перед вами не оригинальный прибор.

    Разборка корпуса оригинального ДТ обязательно приведет к неудаче, так как они изготовлены в закрытом варианте. Конечно, можно постараться и добраться до внутренностей, однако это обязательно приводит к поломкам. Корпус таких приборов запаян со всех сторон, по всем стыкам.

    Для сравнения внутренностей заводского ДТ и последующего собирания самодельной схемы рекомендуется воспользоваться, как и было написано выше, неоригинальным устройством. Например, пусть это будет китайский ДСТ-500. Он легко разбирается, схема срисовывается на ура, так как она простая, не содержит сложных заковырок.

    Что касается функционирования, то она одинакова во всех типах ДТ:

    • силовой проводник под напряжением идет через магнитопровод;
    • образуется циклотронное поле;
    • ток идет по выравнивающей обмотке магнитопровода, чтобы стабилизировать поле;
    • компенсируемое напряжение должно быть ровно пропорционально напряжению в сил. проводнике.

    Помимо этого, для компенсирования магнитпровода датчика, требуется измерять величинные и знаковые значения ДТ. Для этих целей в магнитопроводе следует прорезать отверстие, через которое, собственно говоря, и вставляется датчик Холла. Сигнал прибора будет форсироваться, снабжать мощностный эндотрон, выход которого интегрирован со стабилизирующей обмоткой.

    Данным образом, основной целью подобной схемы станет пропуск такой доли напряжения сквозь обмотку, которая бы воздействовала на магнитное поле так, чтобы в разрыве магнитопровода значение приближалось к 0.

    В целой зоне измеряемого напряжения при этом сохранится ювелирная точность КПД соизмеримости. Для измерения точного напряжения компенс. обмотки используется низкоомный резистор-прецизион. Величина падения тока на таком резисторе будет равна значению напряжения в силовой цепи.

    ДТ подобного типа можно легко изготовить своими силами. Потребность в таких регуляторах постоянно растет, стоят они, как и говорилось, недешево.

    Датчик Холла в конкретном случае желательно использовать специфический, бескорпусный. Установить его можно на узкую полоску тонкого фольго-стеклотекстолита. Под ним должно быть предусмотрено посадочное углубление, где он будет посажен на эпоксидный клей очень плотно.

    Внимание. Толщина полоски текстолита в 0,8 мм будет считаться нормальной, так как зайдет в зазор без излишнего трения о стенки и без эффекта болтания.

    ДТ — эталонная установка для вычисления напряжения высоковольтажного пульсара питания. Например, ток, потребляемый стартером или генератором. И с помощью датчика Холла осуществить это удается, используя всего лишь одну микросхему.

    Напоследок интересное видео про датчик тока на основе датчика холла

    Как сделать Левитрон на базе Arduino

    Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
    Далее будут рассмотрены основные настройки дельта принтера.
    Для управления и настройки принтера мы используем программу Pronterface.
    Калибровка принтера делится на три этапа:

    1 Этап. Корректируем плоскость по трем точкам

    Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
    Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
    В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

    Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.

    Алгоритм настройки:

    1. Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)

      После чего мы увидим все настройки принтера.
    2. Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
      И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
    3. Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
    4. Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
    5. Теперь приступаем непосредственно к настройке наших трех точек.
      Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.

    Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

    Калибровка:

    1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
    2. Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
    3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
    4. Команды:
      G666 R67,7
      M500
      G28
    5. Подгоняем дельта радиус пока наша плоскость не выровняется
    3 Этап. Находим истинную высоту от сопла до столика

    Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
    1 Способ:
    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
    G666 H 235.2
    M500
    G28

    2 Способ:
    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

    Схема на микросхеме 711

    ACS 711 – тот самый чип, благодаря которому удастся изготовить токовый датчик или ТД на основе ДХ (датчика Холла). ЧД такого датчика будет равен почти 100 кГц, что будет вполне эффективно для проведения измерений.

    Микросхема этого типа имеет выход, который интегрируется с усилителем. Последний, в свою очередь, за счет своей оперативности способен увеличивать возможности схемы вплоть до 1 А/В.

    Что касается питания, то напряжение на усилитель поступает за счет применения внутреннего источника 2-полярного типа. Это может быть вариант NSD10 либо какой-нибудь другой. Сама микросхема питается уже посредством стабилизатора, имеющего выход с напряжением 3,3 В.

    Как сделать Левитрон на базе Arduino

    Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
    Далее будут рассмотрены основные настройки дельта принтера.
    Для управления и настройки принтера мы используем программу Pronterface.
    Калибровка принтера делится на три этапа:

    1 Этап. Корректируем плоскость по трем точкам

    Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
    Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
    В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

    Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.

    Алгоритм настройки:

    1. Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)

      После чего мы увидим все настройки принтера.
    2. Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
      И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
    3. Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
    4. Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
    5. Теперь приступаем непосредственно к настройке наших трех точек.
      Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.

    Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

    Калибровка:

    1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
    2. Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
    3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
    4. Команды:
      G666 R67,7
      M500
      G28
    5. Подгоняем дельта радиус пока наша плоскость не выровняется
    3 Этап. Находим истинную высоту от сопла до столика

    Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
    1 Способ:
    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
    G666 H 235.2
    M500
    G28

    2 Способ:
    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

    ДТ на эффекте Холла: общий взгляд

    Что такое эффект Холла? Как известно, это явление основано на том, что если поместить в магнитное поле какой-либо полупроводник прямоугольного типа, и пропустить сквозь него напряжение, то на краях материала обязательно возникнет электрическая сила, направленная перпендикулярно магнитному полю.

    Именно по этой причине магнитный датчик принято называть ДХ в честь ученого Холла, которому удалось первым раскрыть этот самый эффект.

    Что дает этот самый эффект в автомобильной электрике? Все просто. Когда к ДХ подносится напряжение, то на краях пластины (она бывает расположена внутри ДХ) возникает разность потенциалов, и дается значение, пропорциональное СМП (силе магнитного поля).

    Таким образом, в автомобильной сфере удалось использовать бесконтактные элементы, значительно лучше показавшие себя на практике, чем детали, оснащенные контактными группами. Последние приходилось регулярно чистить, ремонтировать, менять.

    Бесконтактные ДХ успешно контролируют, например, скорость вращения валов, широко используются в системах зажигания, применимы в тахометрах и АБС.

    Для измерений силы тока в различных электрических цепях с помощью микросхемы АС712 это удается сделать. Эффект Холла в данном случае оказывает неоспоримую помощь. Таким образом, удается изготавливать датчик или регулятор электрического тока на ДХ.

    Подобные датчики позволят измерять силу не только постоянного, но и переменного тока, получать значения в млА.

    Как правило, модуль с микросхемой АС712 функционирует строго от 5В, зато позволяет измерять максимальный уровень тока до 5 А. При этом напряжение должно быть выставлено в пределах значений от 2 квт.

    Вообще, ДТ применяются повсеместно в электротехнике для создания коммуникаций обратной связи. В зависимости от конкретного места функционирования, ДТ классифицируются на несколько видов. Известны резистивные ДТ, токово-трансформаторные, ну и конечно, ДТ на эффекте Холла.

    Нас интересуют ДТ на эффекте Холла. Они еще называются открытыми регуляторами или приборами с выходным сигналом по напряжению. Предназначение их: бесконтактным способом измерять переменный, постоянный и импульсный ток в диапазонах от плюс/минус 57 до плюс/минус 950 Ампер при в.о. 3 млс.

    Выходное напряжение ДТ бывает четко соизмерно вычисляемым параметрам тока. 0-е значение напряжения равняется половинной величине тока питания. Тем самым, диапазон выхода тока составляет 0,25-0,75 В.

    Настройку чувствительности ДТ легко провести методом трансформации числа витков тестируемого проводника по кругу магнитопровода регулятора.

    Корпус ДТ обязан быть устроен из прочного РВТ пластика.

    РВТ пластик – это пластиковый материал, получаемый посредством однородного сваривания.

    Что касается жестких выводов корпуса ДТ, то их бывает 3. Предназначены они для пайки на плату.

    Цепь выхода ДТ – пара комплектарно-биополярных транзисторов. Другими словами, это не что иное, как полупроводниковый прибор, в котором сформировано два перехода, а перенос заряда осуществляется носителями 2-х полярностей или иначе – электронами и квазичастицами.

    ДТ на эффекте Холла бывают также оригинального и неоригинального производства. Первые выделяются привлекательным дизайном, надежны и способны давать высочайшую точность показаний. А вот ДТ неоригинального производства таких параметров не имеют, хотя тоже способны предоставить свои преимущества. К ним относится разборный корпус и низкая стоимость.

    Внимание. Если ДТ легко разбирается путем вывинчивания 4-х винтиков, то перед вами не оригинальный прибор.

    Разборка корпуса оригинального ДТ обязательно приведет к неудаче, так как они изготовлены в закрытом варианте. Конечно, можно постараться и добраться до внутренностей, однако это обязательно приводит к поломкам. Корпус таких приборов запаян со всех сторон, по всем стыкам.

    Для сравнения внутренностей заводского ДТ и последующего собирания самодельной схемы рекомендуется воспользоваться, как и было написано выше, неоригинальным устройством. Например, пусть это будет китайский ДСТ-500. Он легко разбирается, схема срисовывается на ура, так как она простая, не содержит сложных заковырок.

    Что касается функционирования, то она одинакова во всех типах ДТ:

    • силовой проводник под напряжением идет через магнитопровод;
    • образуется циклотронное поле;
    • ток идет по выравнивающей обмотке магнитопровода, чтобы стабилизировать поле;
    • компенсируемое напряжение должно быть ровно пропорционально напряжению в сил. проводнике.

    Помимо этого, для компенсирования магнитпровода датчика, требуется измерять величинные и знаковые значения ДТ. Для этих целей в магнитопроводе следует прорезать отверстие, через которое, собственно говоря, и вставляется датчик Холла. Сигнал прибора будет форсироваться, снабжать мощностный эндотрон, выход которого интегрирован со стабилизирующей обмоткой.

    Данным образом, основной целью подобной схемы станет пропуск такой доли напряжения сквозь обмотку, которая бы воздействовала на магнитное поле так, чтобы в разрыве магнитопровода значение приближалось к 0.

    В целой зоне измеряемого напряжения при этом сохранится ювелирная точность КПД соизмеримости. Для измерения точного напряжения компенс. обмотки используется низкоомный резистор-прецизион. Величина падения тока на таком резисторе будет равна значению напряжения в силовой цепи.

    ДТ подобного типа можно легко изготовить своими силами. Потребность в таких регуляторах постоянно растет, стоят они, как и говорилось, недешево.

    Датчик Холла в конкретном случае желательно использовать специфический, бескорпусный. Установить его можно на узкую полоску тонкого фольго-стеклотекстолита. Под ним должно быть предусмотрено посадочное углубление, где он будет посажен на эпоксидный клей очень плотно.

    Внимание. Толщина полоски текстолита в 0,8 мм будет считаться нормальной, так как зайдет в зазор без излишнего трения о стенки и без эффекта болтания.

    ДТ — эталонная установка для вычисления напряжения высоковольтажного пульсара питания. Например, ток, потребляемый стартером или генератором. И с помощью датчика Холла осуществить это удается, используя всего лишь одну микросхему.

    Напоследок интересное видео про датчик тока на основе датчика холла

    Читать еще:  Необычные кормушки для птиц из старой посуды - 2 варианта
    Ссылка на основную публикацию
    Статьи c упоминанием слов:

    Adblock
    detector