0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики шагового двигателя

Характеристики шагового двигателя

Шаговое устройство — бесщеточный двигатель с несколькими обмотками, функционирующий по синхронному принципу.

С точки зрения конструкции механизм предельно прост и состоит из трех основных элементов:

  • выводы,
  • вал,
  • круглый корпус.

Принцип работы шагового двигателя заключается в поочередной активации обмоток, которые обеспечивают вращение / остановку ротора.

Стартер и ротор вращаются под воздействием магнитного потока, при этом зависимость силы вращения механизма прямо пропорциональна силе магнитного поля, мощность которой коррелирует с числом витков в обмотке и значением электрического тока в ней.

Таким образом, устройство может быть описано, как механизм, трансформирующий электроимпульсы во вращение.

Основные технические характеристики шаговых двигателей

К основным характеристикам шаговых двигателей, на которые следует обращать внимание при их выборе, относят:

  • число шагов на один полный оборот,
  • величина единичного углового шага [°],
  • максимальный крутящий момент [Н·м],
  • номинальный ток обмоток [А],
  • тип шагового двигателя (конструкция, схема включения обмоток),
  • типоразмер шагового двигателя,
  • диаметр выходного вала ротора,
  • способ передачи крутящего момента.

Кроме того, в процессе проектирования новых технических средств при выборе шагового двигателя учитывают его габаритные размеры, возможность установки датчика обратной связи (энкодера), сопротивление обмоток, индуктивность обмоток, рабочий диапазон температур и пр.

Важнейшей характеристикой ШД является величина его углового шага. Величина углового шага влияет на точность перемещений исполнительного органа, приводимого в движение шаговым электроприводом. Эта характеристика тесня связана с другой характеристикой ШД — количеством шагов на один полный оборот двигателя. Одну из этих характеристик обязательно указывают в паспорте к шаговому двигателю или даже в обозначении его модели. Например, название ДШИ-200 говорит, что ротор этого двигателя совершает один полный оборот за 200 шагов (200 импульсов, поданных на его обмотки). Несложно подсчитать, что при числе шагов на один оборот вала ротора ШД один угловой шаг для него соответствует 1,8°.

Для иностранных двигателей характерно в названии модели указывать габаритные размеры двигателя. Например, в маркировке двигателя ST57-76 первое число говорит о ширине квадрата присоединительного фланца (57х57 мм), а второе число указывает на длину корпуса двигателя без учёта длины вала (76 мм).

Читать еще:  Ветряк на базе двигателя от гироскутера

Сфера применения

Наиболее широкое применение шаговые двигатели нашли в автомобильной промышленности, в производстве оборудования различного назначения и всевозможной бытовой техники. Основная цель — максимально автоматизировать производственный процесс.

Возможность точного позиционирования делает эти механизмы незаменимыми в работе устройств хранения информации.

Высокая надежность и отличные технические характеристики данной разновидности двигателей обуславливают их широкую востребованность в военной промышленности.

Преимущества и недостатки

Список очевидных эксплуатационных преимуществ этих устройств составляют:

  • высокая точность работы,
  • минимальная погрешность даже при работе на низких скоростях,
  • впечатляющая износостойкость (в том числе и за счет отсутствия щеток).

В качестве основного недостатка стоит упомянуть проблему так называемого пропущенного шага, в результате которого происходят сбой при выполнении фрезерования. Данная неприятность зачастую является следствием применения завышенных скоростных режимов обработки материала или установкой на станок двигателей недостаточной мощности.

Чтобы избежать таких неполадок в работе шагового двигателя, необходимо осуществлять настройку максимально корректно, устанавливать драйверы в четком соответствии с техническими требованиями и рекомендациями производителя. Правильно рассчитанная мощность шагового двигателя и корректные скоростные режимы эксплуатации полностью исключают проблему пропущенного шага.

Компания MULTICUT предлагает на выгодных условиях приобрести фрезерно-гравировальные станки с ЧПУ на шаговых двигателях по ценам производиталя. Для оформления заказа или при необходимости в развернутой технической консультации по тому или иному продукту позвоните нам или оставьте заявку на сайте.

Основные принципы управления шаговыми электродвигателями

Режим полношагового управления ШД

Одним из простейших способов управления шаговым двигателем является полношаговое управление, при котором питание подаётся одновременно на две противоположные обмотки. Полярность напряжения на обмотках должна быть одинаковой, чтобы магнитная цепь, образованная статором и ротором была последовательной (см. рисунок).

При полношаговом способе управления присоединение обмоток к источнику питания может быть любым, как последовательным, так и параллельным. Последовательное соединение обмоток потребует удвоенного напряжения питания для достижения номинального тока в обмотках и развития требуемого вращающего момента на валу электродвигателя. В случае параллельного соединения активных обмоток статора напряжение питания может быть ниже, но при этом уменьшается суммарное сопротивление обмоток, а следовательно, в два раза возрастает ток, потребляемый двигателем от источника питания.

Режим полношагового управления позволяет ШД обеспечить наибольший развиваемый крутящий момент на валу!

Читать еще:  Гриндер из двигателя от стиральной машины

Режим полушагового управления ШД

Как было описано выше, количество шагов на один полный оборот шагового двигателя влияет на точность перемещения рабочего органа аппарата, в котором этот двигатель используется. Самые простые современные схемы управления шаговыми двигателями (драйверы шаговых двигателей) способны удвоить число шагов ШД за счет функции деления шага. При этом используется так называемый полушаговый способ управления шаговым двигателем. В промежуточные моменты между основными положениями активных обмоток статора производится подача напряжения питания на все четыре обмотки таким образом, что ротор двигателя может остановиться в промежуточном положении между двумя обмотками, как это показано на следующем рисунке.

То есть используя режим полушагового управления двигателем с номинальным числом шагов на оборот 200 шт. можно получить величину углового шага не 1,8°, а 0,9°, что соответствует 400 шагам!

Виды управления и разновидности

Управление шаговым двигателем может осуществляться по четырем схемам:

  • с попеременной активацией фаз,
  • с перекрытием фаз,
  • в полушаговом режиме,
  • в микрошаговом режиме.

Существует три вида шаговых устройств:

Гибридный двигатель постоянного сопротивления; С переменным магнитом оснащен 3 либо 4 обмотками, характеризуется свободным вращением; С постоянным магнитом оснащен 2 обмотками, испытывает сопротивление вращению.

В числе данных разновидностей наиболее мощной является гибридная модель, представляющая собой усовершенствованный вариант устройства постоянного сопротивления.

Схемы подключения шаговых двигателей

Производимые промышленностью шаговые двигатели изготавливают с разным числом выводов, что связано со схемами их предполагаемого подключения к управляющим драйверам. Исходя из схемы подключения различают биполярные, униполярные и универсальные шаговые двигатели.

Биполярные двигатели содержат всего четыре вывода для подключения к драйверу. В таких двигателях противоположные обмотки соединены последовательно. И для их питания требуются специальные мостовые схемы.

На одну пару выводов такого двигателя приходится одна мостовая схема, содержащая четыре ключевых элемента (транзистора). Для управления биполярным двигателем электронный драйвер содержит две мостовые схемы. Изменения полярности напряжения на выводах ШД добиваются попарным включением ключевых элементов, установленных в противоположных плечах моста.

Униполярные шаговые двигатели содержат шесть (иногда пять) выводов, как показано на рисунках ниже. Дополнительные выводы идут от точек соединения противоположных обмоток, благодаря чему появляется возможность независимого управления каждой из них без использования сложных мостовых схем. При этом реализуется так называемый волновой режим с присущими ему достоинствами и недостатками.

Униполярный двигатель может с успехом использоваться и при его подключении в биполярном режиме, когда его средние выводы просто остаются незадействованными. Это актуально особенно в связи с тем, что современные драйверы для биполярных шаговых двигателей позволяют расширять штатные возможности двигателей за счёт микрошагового режима управления. Однако следует иметь ввиду, что для подключения к мостовым схемам драйверов биполярных двигателей годятся лишь униполярные шаговые двигатели с шестью выводами!

Читать еще:  Поршневой двигатель работающий на сжатом воздухе

Если каждая из четырёх обмоток шагового двигателя имеет независимую пару выводов, то такой двигатель относят к универсальным. Смотрите схему ниже.

Виды управления и разновидности

Управление шаговым двигателем может осуществляться по четырем схемам:

  • с попеременной активацией фаз,
  • с перекрытием фаз,
  • в полушаговом режиме,
  • в микрошаговом режиме.

Существует три вида шаговых устройств:

Гибридный двигатель постоянного сопротивления; С переменным магнитом оснащен 3 либо 4 обмотками, характеризуется свободным вращением; С постоянным магнитом оснащен 2 обмотками, испытывает сопротивление вращению.

В числе данных разновидностей наиболее мощной является гибридная модель, представляющая собой усовершенствованный вариант устройства постоянного сопротивления.

Волновой полушаговый принцип управления ШД

Может иметь место также и волновой полушаговый режим управления двигателем. В этом режиме одновременно работают не боле двух обмоток, позволяя делить угловой шаг пополам, но снижая развиваемый крутящий момент на валу. Схема полушагового волнового режима приведена ниже.

Благодаря развитию современных средств микроэлектроники появилась возможность реализовать наиболее продвинутый режим управления шаговыми двигателями — микрошаговый. В этом режиме на смежные обмотки двигателя подаются электрические сигналы, отношение которых пропорционально величине деления номинального угла поворота статора. Физически подаваемые электрические сигналы напоминают синусоиды, смещенные по фазе друг относительно друга и дискретизированные по величине. При этом изменяется фаза сигналов, подаваемых на разные обмотки, и ротор позиционируется между полюсами статора в положении, пропорционально токам, действующим в смежных обмотках.

Режим микрошагового управления хорош тем, что обеспечивает высокую плавность вращения ротора двигателя, высокую точность перемещения, низкий уровень шума. Недостатком данного способа управления ШД является снижение развиваемого вращающего момента. Причём, чем больше коэффициент деления шага, тем развиваемый момент на валу ШД будет меньше. Использование современной элементарной базы и аппаратных методов регулирования тока позволяет частично компенсировать этот недостаток. А благодаря возможности существенно повысить точность перемещений исполнительных механизмов режим микрошагового управления шаговыми двигателями занял существенную нишу в современной технике.

Современные схемы управления шаговыми двигателями (драйверы) обеспечивают режим микрошага 1/4, 1/8, 1/16, 1/32, 1/64 и более!

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector