1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Серводвигатели против шаговых двигателей

Содержание

Серводвигатели против шаговых двигателей

Шаговый электродвигатель — это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора.

Шаговые двигатели можно отнести к группе бесколлекторных двигателей постоянного тока. Шаговые двигатели, имеют высокую надежность и большой срок службы, что позволяет использовать их в индустриальных применениях. При увеличении скорости двигателя, уменьшается вращающийся момент.
Шаговые двигатели делают больше вибрации, чем другие типы двигателей, поскольку дискретный шаг имеет тенденцию хватать ротор от одного положения к другому. За счет этого шаговый двигатель во время работы очень шумный. Вибрация может быть очень сильная, что может привести двигатель к потери момента. Это связано с тем, что вал находится в магнитном поле и ведет себя как пружина. Шаговые двигатели работают без обратной связи, то есть не используют Энкодеры или резольверы для определения положения.
Типы:
Существует четыре главных типа шаговых двигателей:

  • Шаговые двигателя с постоянным магнитом
  • Гибридный шаговые двигателя
  • Двигатели с переменным магнитным сопротивлением
  • Биполярные и униполярные шаговые двигатели

Преимущества Шагового двигателя:

  • Устойчив в работе
  • Работает в широком диапазоне фрикционных и инерционных нагрузок и скоростей, скорость пропорциональна частоте входных импульсов.
  • Нет необходимости в обратной связи
  • Намного дешевле других типов двигателей
  • Подшипники — единственный механизм износа, за счет этого долгий срок эксплуатации.
  • Превосходный крутящий момент при низких скоростях или нулевых скоростях
  • Может работать с большой нагрузкой без использования редукторов
  • Двигатель не может быть поврежден механической перегрузкой
  • Возможность быстрого старта, остановки, реверсирования

Главным преимуществом шаговых приводов является точность. При подаче потенциалов на обмотки, шаговый двигатель повернется строго на определенный угол. Шаговый привод, можно приравнять к недорогой альтернативе сервоприводу, он наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика.

Недостатки шагового двигателя:

  • Постоянное потребление энергии, даже при уменьшении нагрузки и без нагрузки
  • У шагового двигателя существует резонанс
  • Из-за того что нет обратной связи, можно потерять положение движения.
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность

Применение.
Шаговые двигателя имеет большую область применения в машиностроении, станках ЧПУ, компьютерной технике, банковских аппаратах, промышленном оборудовании, производственных линиях, медицинском оборудовании и т.д.

Что такое серво двигатель и принцип его работы:

Серводвигателя делятся на категории щеточные (коллекторные) и без щеточные (без коллекторные) . Щеточные (коллекторные) серводвигатели могут быть постоянного тока, без коллекторные серводвигатели могут быть постоянного и переменного тока. Серводвигатели с щетками (коллекторные), имеют один недостаток каждые 5000 часов необходима замена щеток. На серводвигателях всегда есть обратная связь, это может быть энкодер или резольвером. Обратная связь необходима, чтобы достичь необходимой скорости, либо получить нужный угол поворота. В случаях высоких нагрузок и если скорость окажется ниже требуемой величины, ток пойдет на увеличение , пока скорость не достигнет нужной величины, если сигнал скорости покажет, что скорость больше, чем нужно, ток, пойдет на уменьшение. При использовании обратной связи по положению, сигнал о положении можно использовать чтобы остановить двигатель, после того, как ротор двигателя приблизится к нужному угловому положению.
АС серводвигатель — двигатель переменного тока. В ценообразовании двигатель переменного тока дешевле двигателя постоянного тока. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели и коллекторные.
В синхронных двигателях переменного тока ротор и магнитное поле вращается синхронно с одинаковой скоростью и в одном направлении с статором, а в асинхронных двигателях переменного тока ротор вращается несинхронно по отношению с магнитным полем. В асинхронном двигателе из-за отсутствия коллектора (щетки) регулировка оборотов происходит за счет изменения частоты и напряжения.

DC серводвигатель — двигатель постоянного тока.
Серводвигатели постоянного тока из за своих динамических качеств могут быть использованы приводом непрерывного действия. Серводвигатели постоянного тока могут постоянно работать в режимах старт, остановка и работать в обоих направлениях вращения. Обороты и развиваемый крутящий момент можно изменять путем изменения величины напряжения тока питания или импульсами.

Преимущества серводвигателей:

  • При малых размерах двигателя можно получить высокую мощность
  • Большой диапазон мощностей
  • Отслеживается положение, за счет использования обратной связи
  • Высокий крутящий момент по отношении к инерции
  • Возможность быстрого разгона и торможения
  • При высокой скорости, высокий крутящий момент
  • Допустимый предел шума при высоких скоростях
  • Полное отсутствия резонанса и вибрации
  • Точность позиционирования
  • Широкий диапазон регулирования скорости.
  • Точность поддержания скорости и стабильность вращающего момента.
  • Высокий статический момент Мо при нулевой скорости вращения.
  • Высокая перегрузочная способность: Mmax до 3.5Mo, Imax до 4Io
  • Малое время разгона и торможения, высокое ускорение (обычно > 5 м/с 2 ).
  • Малый момент инерции двигателя, низкий вес, компактные размеры.

Пример работы двигателя:
На данном примере я перескажу вам принцип работы серводвигателя. После того, как вы сгенерировали управляющую программу, она создается в системе G-кодов, то есть ваша линия, окружность или любой созданный вами объект конвертируется в перемещение по координатам X,Y, Z на определённое расстояние. За расстояние отвечают импульсы, которые подаются через блок управления на двигатель. При перемещении любой из осей, например на 100 мм, драйвер (блок управления) подает определённое напряжение на двигатель, вал двигателя (ротор). Вал двигателя соединен с ходовым винтом (ШВП), вращение оборотов двигателя отслеживается энкодер. При вращении ходового винта по любой из осей, потому что при использовании серво, энкодеры (обратная связь) устанавливаются на тех осях, где вы хотите определить положение, на энкодер подаются импульсы, которые считываются системой управления ЧПУ. Системы ЧПУ программируются так, что ни понимают что, например, для перемещения на 100 мм необходимо получить определенное количество импульсов. Пока система ЧПУ не получит нужное количество импульсов на вход драйвера (блока управления) будет подаваться напряжение задания (рассогласование). Когда портал станка проедет заданные 100 мм, система ЧПУ получит нужное количество импульсов и напряжение на входе драйвера упадет до 0 и двигатель остановится. Прошу вас заметить, что преимущество обратной связи в том, что если по какое то либо причине произойдет смещение портала станка, энкодер отправит на систему управления нужное количество импульсов, для подачи нужного напряжения на согласования драйвера (блока управления), и двигатель поменяет угол. Для того что разногласие было равно 0, это помогает удерживать станок в заданной точке с высокой точностью. Не все типы двигателей способны, обеспечивать динамику разгона, нужный крутящий момент и т. п.

Сравнительная характеристика по основным параметрам

Срок эксплуатации и обслуживание

Шаговые двигатели – нет щеток, это увеличивает срок эксплуатации до многих лет, единственным слабым местом являются подшипники, могут работать в большом диапазоне высоких температур. Срок эксплуатации в разы дольше любого типа двигателя.

Из всех видов серво двигателей, самые дешевые это двигателя коллекторного типа (со щетками), они менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.
Другой тип бесколлекторных сервоприводов производятся по надежности как и шаговые двигателя, отсутствие щеток увеличивает срок эксплуатации, но не уменьшает стоимость ремонта. В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Очень тяжело повредить и износить подшипник. Как и в любом двигателе возможно повреждение обмотки двигателя. Из низкой цены проще купить новый шаговый двигатель.

В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

При использование точных механизмов, может быть не ниже +/- 0.01 мм

сервоприводы имеют высокую динамическую точность до 1-2мкм и выше (1 мкм = 0.001 мм)

В лазерно гравировальных станках скорость 20 – 25 метров в минуту. Если мы говорим о фрезерных станках ЧПУ с тяжелыми порталами и балками. Максимальная скорость перемещения до 9 м/мин.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин при использование высокосортной механике.

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Потеря шагов при повышении скорости и нагрузки

При высоких скоростях и высоких нагрузках происходит потеря шагов. Эта не проблема возможна при воздействии внешних факторов: ударов, вибраций, резонансов и т.п.

У серво двигателей присутствует обратная связь, что полностью исключает потерю шагов.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

По цене шаговый двигатель намного дешевле своего товарища серво двигателя.

Минимум в 1,5 раз дороже шагового двигателя.

Каждый тип двигателя предназначен для своей задачи. В некоторых случаях нужно использовать шаговых двигатель, а для некоторых задач необходимо использовать только серво двигатель. В фрезерных станках ЧПУ широко используются оба типа двигателей, просто у каждого из них есть свои задачи, и иногда не целесообразно переплачивать за серво, при небольших объемах производства.

Подведем черту сравнения серводвигателей и шаговых двигателей:

Если же вас не устраивают скоростные характеристики, Вам необходимо рассмотреть фрезерные деревообрабатывающие станки с ЧПУ «АртМастер» 2112, 2515, 3015(авт.) и высокоскоростной фрезерный деревообрабатывающий станок «АртМастер 3015 Racer».

Вы всегда должны для себя понимать, что сервомоторы позволяют вам с экономить время на холостых переходах, при этом вы не должны забывать правильно оптимизировать количество проходов. Скорость фрезеровки всегда зависит от мощности режущего инструмента (электрошпинделя) и типа фрезы. Мы не сможете получить хорошую скорость фрезеровки при низком качестве инструмента. Вы получите либо брак в изделии, либо Вам потребуется постоянная замена режущего инструмента. То есть при использовании высоких скоростей, при обработке материала вы не должны забывать о качестве и типе инструмента для фрезеровки. Дорогой инструмент не только быстрее режет, но и служит дольше. И прошу не забывать другое преимущество серво: высокая скорость и производительность в разы выше, чем у шагового при фрезеровке объёмных изображений (фото), резьбы (фото). При наличии смены инструмента, вакуумного стола вы можете оптимизировать ваше производство и минимизировать отходы.

Читать еще:  Простое приспособление для заточки стамесок

Если вы хотите добиться увеличения объёмов выполненной работы на вашем производстве, решение только одно — сервомоторы, а для старта или изготовления фасадов, дверей, столешниц, и прямолинейного, криволинейного раскроя при объёмах производства от 500-1000 кв.м, вы можете остановить свой выбор на станках с шаговыми двигателями.

  • Назад
  • Вперёд

Лизинг от ПриватБанка

Наше оборудование можно приобрести в лизинг от ПриватБанка

Мы в Google Play!

Используйте наше приложение для смартфонов и планшетов на базе ОС Android для ознакомления с нашей продукцией!

Описание

Особенности:

конструкция станка по европейскому типу;

наличие системы гидроразгрузки;

двухскоростной режим движения полотна на счет смены полярности двигателя;

диапазон поворота консоли вправо 0-60 0 , влево 0-45 0

наличие быстрозажимных механических тисков;

тензометр для определения силы натяжения полотна;

система подачи СОЖ.

Модель MBS-910CSD представляет собой традиционный тип ленточнопильного станка европейского типа, эффективная работа которого достигается за счет широкого диапазона поворота консоли. Конструкция станка позволяет менять положение пильной рамы влево, в диапазоне 0-45 0 , вправо допускается поворот на 60 0 . Станок предназначается для пиления круглых металлических заготовок в заводских условиях. Максимально допустимый диаметр заготовок для пиления составляет 225 мм. При повороте пильной рамы вправо под углом 60 0 максимально допустимый диаметр распила составляет 90 0 . Модель MBS-910CSD имеет систему гидроразгрузки, позволяющей обеспечить плавное опускание консоли в рабочую зону, необходимое прижимное усилие на обрабатываемую заготовку. Гидроцилиндр позволяет регулировать вручную скорость подачи консоли. Для поднятия пильной рамы в конструкции использована пружина, действие которой компенсирует усилия оператора.

Модель MBS-910CSD имеет мощный электродвигатель – 1,1 кВт, позволяющий работать в 2-х режимах скорости движения ленточного полотна. Смена скоростного режима осуществляется путем смены полярности двигателя. Пиление осуществляется на скорости движения полотна 35, 70 м/мин, в зависимости от жесткости и прочности материала заготовки. Ленточнопильный станок оснащен панелью управления, на котором расположена кнопка аварийной остановки. Крепление заготовок на станке осуществляется с помощью быстрозажимных тисков.

Для улучшения качество распила и сохранения эксплуатационных характеристик полотна станок оборудован системой подачи СОЖ. Вес станка вместе с тумбой, идущей в комплектации к станку, составляет 220 кг.

Станок имеет направляющие, позволяющие регулировать проход полотна в зависимости от диаметра обрабатываемой заготовки, не допустить увод полотна. Сила натяжение ленточной полотна определяется по показаниям тензометра и устанавливается в ручном режиме. Позиционирование полотна относительно обрабатываемой заготовки осуществляется эксцентриковыми подшипниками, повышающими качество и точность распила.

  • Отправить тему по email
  • Версия для печати

Как выбрать шаговый двигатель. Про момент, скорость и прочее

Сообщение xentaur » 14 июн 2012, 14:51

Часто на форуме спрашивают совета по выбору шаговиков.
«Я нашёл такой-то шаговик. Потянет ли он . »
«Мне нужен такой шаговик, чтобы портал летал очень быстро. Какой выбрать из А Б В Г?»
«У меня сейчас ХХХХ шаговики, хочу ТАКИЕ поставить. Лучше будет или нет?»

Попал ко мне в руки хороший (на мой взгляд) каталог шаговиков с кучей графиков. Вот первая компиляции графиков для одной небольшой серии шаговиков.

По графикам очевидно и понятно, что для небольшого станочка лучше второй мотор — даже в последовательном включении характеристика момента у него выше, чем у первого при одинаковом напряжении питания и модели драйвера. Только применение высоковольтного драйвера «спасёт» второй шаговик от поражения. И конечно же высоковольтный драйвер подойдет и к первому (Я не знаю ограничения параметров таких драйверов, может и не всегда можно ).
Модели моторов Я специально затёр.

P.S. Хочу сделать компиляцию таких графиков, для моторов в разных типоразмерах и параметрами.

P.P.S. Что за параметр detent torque? Кто точно знает — сообщите. Википедию по шаговикам не предлагать.
Нашёл, что это «The minimal torque present in an unenergized motor. The detent torque of a stepping motor is typically about 1% of its static energized torque». Минимальный момент «удержания» обесточенного мотора. Похоже на правду.

Re: Как выбрать шаговый двигатель. Про момеет, скорость и пр

Сообщение Nick » 14 июн 2012, 15:01

Use the Console, Luke.

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение aftaev » 14 июн 2012, 15:24

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение xentaur » 14 июн 2012, 16:32

Всё может быть. Эти графики от очень известной фирмы. Думаю можно верить. Но самое главное — Я хочу показать, что высокий момент удержания — один из самых последних параметров шаговика в приводах подач.

P.S. Какие типоразмеры наиболее интересны?

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение aftaev » 14 июн 2012, 16:48

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение kernel » 15 июн 2012, 10:38

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение Тима » 15 июн 2012, 11:30

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение aftaev » 15 июн 2012, 11:45

на обороты, а точнее сколько вольт нужно подавать на драйвер/двиг. Большого размера двигатели имеют как правило больше индуктивность потому они медленне крутяться.

К примеру если взять драйвер шагового+БП и к ним подключить по очереди разные по индукивности двигатели, они будут иметь разные максимальные обороты при одинаково напряжении питания.
Есть формулы для рсчета напряжения от индуктивности. Как найду выложу.

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение Steel.ne » 15 июн 2012, 11:48

Я не aftaev, но пару копеек вставлю )
Величина магнитного поля прямо пропорциональна току в катушке и количеству витков. Соответственно, чтобы получить мощное поле есть два пути — увеличить ток или увеличить количество витков. При увеличении тока после определенного предела упираемся в сопротивление (и сечение) подводящих проводов, потери на коммутации и т.д. Поэтому надо увеличивать количество витков. Когда увеличиваем количество витков, ясное дело, увеличивается индуктивность. А увеличивается она уже не линейно, а квадратично.

И вот теперь, чтобы во время шага (при больших скоростях это достаточно короткий импульс) создать требуемый ток, приходится подавать повышенное напряжение. А значит и использовать высоковольтные драйвера.

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение kernel » 15 июн 2012, 12:05

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение Steel.ne » 15 июн 2012, 12:09

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение aftaev » 15 июн 2012, 13:50

Re: Как выбрать шаговый двигатель. Про момент, скорость и пр

Сообщение Тима » 15 июн 2012, 14:01

Re: Типы передач [Нужна помощь в оформлении]

Сообщение Fisher » 20 июл 2012, 10:19

Re: Типы передач [Нужна помощь в оформлении]

Сообщение Fisher » 20 июл 2012, 10:24

Re: Типы передач [Нужна помощь в оформлении]

Сообщение Fisher » 20 июл 2012, 10:26

Особенности работы ШД предъявляют весьма жесткие требования к согласованию параметров выбираемого двигателя с заданной нагрузкой. Это особенно актуально в разомкнутых системах дискретного привода, когда пропуск двигателем хотя бы одного управляющего импульса приводит к ошибке преобразования электрического сигнала управления в угол, который система исправить не в состоянии. Проверку на нагрев шаговых двигателей обычно не производят, так как они рассчитаны на длительный режим прохождения импульсов тока по обмоткам управления.

При выборе шагового двигателя, прежде всего, следует ориентироваться на потребляемую приводом (двигатель + блок управления) из сети мощность, величину напряжения питания, требуемый крутящий момент на выходном валу, скорость вращения вала и момент инерции нагрузки. Для одного и того же привода, при разных величинах напряжения питания, потребляемая мощность привода P=U*I (напряжение*ток) различается. Например, привод D5779 при напряжении питания 50В потребляет из сети 150Вт, при напряжении питания 30В – 90Вт. КПД шаговых приводов в диапазоне частот 1 — 5КГц, как и КПД синхронных двигателей с постоянными магнитами составляет 80-90%.

Мощность на выходном валу привода P=M*ω (крутящий момент*угловая скорость). Очевидно, что мощность на выходном валу не может превышать потребляемую из сети мощность.

Закон сохранения энергии для системы, состоящей из двигателя и нагрузки на валу, повернувшейся на один полушаг, выглядит следующим образом:

Mдвигателя*φ=0,5*J*ω2 + Mнагрузки*φ + Ммагн*φ +Мтрения*φ

где φ — угол поворота

J – приведенный к валу момент инерции системы

ω – угловая скорость

Mнагрузки – момент нагрузки

Ммагн – момент сопротивления, создаваемый постоянными магнитами двигателя, примерно 5% от величины Mдвигателя

Мтрения – момент трения в системе

Отсюда максимальная скорость, с которой может сделать первый шаг шаговый двигатель в системе с приведенным к валу моментом инерции J и нагруженный моментом Mнагрузки :

ω =(2*φ*(Mдвигателя – Mнагрузки – Ммагн – Мтрения)/J)1/2

На практике необходимо также учитывать электрические переходные процессы в фазах двигателей, которые зависят как от напряжения питания и индуктивности фаз двигателей, так и от способа управления двигателем. Самыми динамичными являются двигатели с минимальной индуктивностью. Обычно стартовые частоты лежат в диапазоне 800-1000Гц (2-2,5 об/сек в полушаговом режиме). Исходя из этого для шагового двигателя, работающего в полушаговом режиме, величина ускорения не должна превышать 4рад/сек2.

Когда требуемый момент, определен, выбор шагового двигателя зависит от предпочтительных габаритов, присоединительных размеров, цены двигателя и блока управления для него.

Если блок управления уже есть (или выбран), необходимо, чтобы ток фазы шагового двигателя не превышал возможности блока управления. Также нужно иметь ввиду число выводов, которые можно подключить к имеющемуся блоку управления.

Сервопривод и шаговый двигатель: что это и в чем разница?

Шаговый двигатель представляет собой бесколлекторное устройство электромеханического типа, имеющее несколько обмоток. Короткие электроимпульсы, подаваемые драйвером, последовательно активируют каждую из обмоток и приводят в движение ротор, вызывая угловые дискретные (или шаговые, что и является источником названия двигателей) перемещения. Для всех шаговых двигателей свойственно осуществление позиционирования на плоскости без обратной связи, ввиду отсутствия энкодера.

Устройство шагового двигателя

Серводвигатель является комплексным устройством, состоящим из как такового привода (щеточный или бесщеточный электромотор), управляющего блока и энкодера для связи с контроллером. Датчик обратной связи при помощи сигналов информирует станок о скорости, угловом положении и прочих параметрах движения.

Высокоскоростной синхронный серводвигатель с принудительным воздушным охлаждением

Шаговый двигатель: достоинства и недостатки

Шаговый двигатель используется на многих граверах, фрезерах, лазерах и прочих станках с программным управлением, которые применяются в металло- и деревообработке, рекламной деятельности, производстве электронных игрушек, товаров декоративно-прикладного назначения и во многих других отраслях. Популярность такого типа электромоторов обусловлена несколькими факторами, в числе которых:

  • длительный эксплуатационный период по причине отсутствия хрупких деталей. Вывести двигатель из строя может только повреждение одной из обмоток или истирание подшипников, что происходит только после очень продолжительного и интенсивного использования;
  • стабильная и высокоточная работа в определенном диапазоне скоростей и нагрузок;
  • низкая стоимость;
  • на невысоких скоростях точность позиционирования инструмента может доходить до ± 0,01 мм при условии использования качественных направляющих;
  • может управляться любыми программными оболочками ЧПУ станков;
  • способность работать в большом температурном диапазоне;
  • невосприимчивость к механическим нагрузкам, принудительным остановкам и реверсированию.
Читать еще:  Деревянный держатель для бумажных полотенец

Однако есть у шаговых двигателей и некоторые недостатки, которые ограничивают сферу их применения или доставляют неудобства:

  • высокая шумность;
  • возникновение вибраций, резонансности и биений на больших скоростях;
  • максимальная скорость разгона за минуту составляет 120 оборотов;
  • низкая предельная скорость перемещения. Для фрезеров — 9 м/мин, для лазерно-гравировальных аппаратов — до 25 м/мин;
  • повышение скорости сверх установленных лимитов приводит к появлению вибраций и пропуску шагов;
  • отсутствие обратной связи провоцирует брак в случае внезапной остановки, попадания посторонних предметов в зону обработки, пропуска шага и т. д.

Сервопривод: плюсы и минусы

Сервопривод встречается на оборудовании с ЧПУ не менее часто, чем шаговый двигатель, но, в силу специфики работы используется на станках, от которых ожидается максимально высокая скорость обработки или повышенная производительность. Речь идет о фрезерах и лазерах, применяемых для выпуска серийной продукции в особо крупных объемах или аппаратах, работающих в сфере протезирования, макетирования, ювелирной области, робототехнике и прочих производствах, где прецизионная точность ставится во главу угла. Из достоинств серводвигателей можно выделить такие, как:

  • соблюдение плавности хода и точности перемещения на любых скоростях, оборотах и нагрузках;
  • практически абсолютная бесшумность при работе;
  • высокая мощность при малых габаритах;
  • широкой скоростной и мощностной диапазон;
  • разгон до 500 оборотов в минуту и торможение происходят за 0,1 секунды;
  • скорость перемещения инструментальной головки может доходить до 60-70 м/мин;
  • использование серводвигателей контурного управления позволяет добиться очень высокой динамической точности (около 0,002 мм). Позиционные устройства проходят заданную траекторию чуть с большей погрешностью, тем не менее, точность по-прежнему превосходит этот же параметр у шагового двигателя;
  • отсутствие вибраций, рывков, резонансов;
  • датчик обратной связи в режиме реального времени отслеживает все аспекты движения на любых траекториях, своевременно передавая их системе управления станком. В случае любых отклонений от программы происходит коррекция и возврат к правильному маршруту, что позволяет минимизировать появление брака.

Как и его «коллега», шаговый двигатель, сервопривод тоже не лишен недостатков

  • ремонт устройства может оказаться настолько дорогостоящим, что может сравниться по цене с новым двигателем;
  • бесколлекторные приводы по цене дороже шаговых примерно в 1,5-2 раза. Модели со щетками более бюджетны, однако щетки в них необходимо менять каждые 5 тыс. отработанных часов;
  • в некоторых случаях принудительная остановка двигателя приводит к его перегреву и может вывести привод из строя.

Вывод

Шаговый двигатель и сервопривод никак нельзя назвать конкурирующими устройствами и приобретение дорогостоящего сервомотора не всегда целесообразно. Применение каждого из них обусловлено рядом сопутствующих факторов, среди которых приоритетные места занимают скорость и точность обработки.

Представляем профессиональный фрезерный станок для обработки камня 1325 Stone. Запуск станка, процесс работы и пример готового изделия на видео.

В гостях у нашего постоянного клиента компании «Пластфактория», которые занимаются изготовлением POS-материалов и сотрудничают с крупными косметическими брендами.

Видеоотчет с посещения производства наших клиентов — компания «АЛЬТАИР». О работе на производстве, изготавливаемых изделиях и станках от компании Wattsan.

Похожие материалы

  • Разработка автоматизированной информационной системы организация приема онлайн заказов для распечатывания фотографий
  • Автоматизированная информационная система для студии дизайна интерьера
  • Автоматизация процесса оценки выпускных квалификационных работ на основе компетентностного подхода
  • Разработка и исследование автоматизированной системы управления утилизации жидких отходов
  • Управление процессом ректификации

Шаговые двигатели находят широкое применение в современной автоматизации. Благодаря низкой стоимости, обширному выбору вида, режима управления, данный тип двигатель популярен не только в заводском оборудовании, но и в самоделках электротехников-любителей (например 3D-принтеры, выжигатели по дереву и прочее). Двигатели данного типа применяются в станкостроении (например в станках ЧПУ), робототехнике, 3D печати благодаря высокой точности позиционирования, широкому диапазону скоростей, быстрому старту, остановки, а также стабильной работе при различных нагрузках.

Шаговый двигатель позволяет осуществлять позиционирование ротора с точностью до долей градуса [1]. Отсюда возникает потребность в управлении плавным изменением скорости перемещаемого объекта шаговым двигателем, что позволит увеличить значение вращающего момента и исключить ударное воздействие на перемещаемый объект.

Существует несколько режимов для управления перемещения ротора шаговым двигателем.

Полношаговый режим — наиболее часто используемый метод управления. Из названия становится понятно, что ротор при подаче напряжения на обмотки совершает полный шаг. Например в двигатель, который состоит из 4 обмоток напряжение подается «попарно». Минус такого режима — возможен резонанс.

Полушаговый режим — режим, который применяется для увеличения точности работы двигателя. Ток подается на все пары обмоток одновременно, тем самым ротор поворачивается ровно на половину от полного шага. Данный режим менее подвержен к появлению резонанса.

Микрошаговый режим — режим, который использует в своей работе подачу тока на обмотки сигналами, а не импульсами, как в других режимах. Такой сигнал называют синусоидальным, при таком сигнале плавно изменяющим значение тока подающееся на обмотки двигателя, снижается количество рывков и ударное воздействие на перемещаемый ротором объект. Данный режим используют станки ЧПУ, так как такое плавное перемещение гарантирует точное позиционирование перемещаемого ротором объекта.

Своевременное изменение значение скорости вращаемого ротора двигателя является важным процессом в работе всей автоматической системы. Во многих станках применяются шаговые двигатели, позволяющие развивать большую мощность и точность позиционирования [2].

Максимальная рабочая скорость двигателя находится в прямой зависимости от следующих характеристик:

  • Напряжение
  • Индуктивность обмотки
  • Ток
  • Количество шагов
  • Тип подключения обмоток (4, 6 выводной и т.д.)
  • Сопротивление

Шаговый двигатель управляется последовательной поочередной подачей определенных импульсов напряжения на обмотки первой и второй фазы возбуждения [3]. Для развития больших скоростей ротору двигателя требуется начинать на низких скоростях из области старта (рисунок 1), после чего выполнять разгон плавно увеличивая величину ускорением. Важно не превышать в области старта значение максимальной скорости. При выполнении остановки вращения выполняется обратный порядок действий, а именно выполняется торможение и в области старта прекращается подача импульсов управления с микроконтроллера. Если нарушить последовательность шагов синхронное перемещение и положение ротора будут потеряны. При разгоне может возникнуть неблагоприятное явление — резонанс. Резонанс замечен меньше при таких режимах работы шагового двигателя как микрошаговый и полушаговый. При появлении резонанса падает момент, из-за чего двигатель начинает пропускать шаги. Наиболее простое решение проблемы резонанса является установка двигателя с более сильными мощностными характеристиками. Для наиболее стабильного разгона желательно иметь нагрузку, при которой момент инерции как минимум равен моменту инерции ротора. На слабо-нагруженном двигателе явление резонанса проявляется наиболее сильно.

Рисунок 1. График зависимости момента шагового двигателя от скорости

Для исполнения процессов разгона или торможения важно правильно сформулировать закон, по которому изменяется значение скорости и установить максимально допустимое значение ускорения. Ускорение должно уменьшаться при увеличении инерционности нагрузки. Для выбора нужного режима разгона необходимо установить нужную скорость и добиться ее за минимальное время. Чаще всего применяется постоянное ускорение для процесса разгона и торможения двигателя.

Микроконтроллер управляет ускорением и торможением двигателя посредством заданного закона, также выполняет роль источника тактовой частоты для драйвера.

Для наиболее абстрактного от деталей случая необходимо установить зависимость длительности шага от текущей скорости.

Характеристика отражающая количество шагов, выполненных при разгоне ротора представим как:

где V — скорость, t — время, N — количество шагов, a — ускорение

Тогда длительность одного шага вычисляется как:

Отсюда следует скорость за один полный шаг:

Шаговые двигатели очень популярны в наше время, но обладают некоторыми недостатками, которые следует решить путем разработки автоматической системы интеллектуального управления скоростью шагового двигателя.

Сфера применения

Наиболее широкое применение шаговые двигатели нашли в автомобильной промышленности, в производстве оборудования различного назначения и всевозможной бытовой техники. Основная цель — максимально автоматизировать производственный процесс.

Возможность точного позиционирования делает эти механизмы незаменимыми в работе устройств хранения информации.

Высокая надежность и отличные технические характеристики данной разновидности двигателей обуславливают их широкую востребованность в военной промышленности.

Скоростной двигатель для ЧПУ станков

Шаговый двигатель — устройство с постоянной мощностью, если мощность определить как момент, умноженный на скорость. Это означает, что крутящий момент обратно пропорционален скорости. Чтобы уяснить, почему мощность мотора не зависит от скорости, представим себе идеальный шаговый двигатель.

В идеальном двигателе нет трения, его момент пропорционален амперо-виткам обмоток и единственной электрической характеристикой является индуктивность. Индуктивность L характеризует способность обмотки запасать энергию в магнитном поле. Индуктивности обладают свойством индуктивного сопортивления, т.е. сопротивления переменному току, которое тем больше, чем быстрее меняется ток, а значит, индуктивное сопротивление возрастает вместе со скоростью вращения двигателя. По закону Ома ток прямо пропорционален напряжению и обратно пропорционален полному сопротивлению, откуда следует, что ток обмотки уменьшается при увеличении скорости вращения. Т.к. момент пропорционален амперо-виткам, а ток обратно пропорционален скорости, то момент также будет обратно пропорционален скорости. Т.е. при нулевой скорости момент стремится к бесконечности, при увеличении скорости момент(и ток) начинает стремиться к нулю.

Электрически, реальный двигатель отличается от идеального в основном ненулевым сопротивлением обмотки, а также ферромагнитными составляющими, которым свойствоенно насыщаться магнитным полем, что приводит к гистерезисным потерям и потерям на вихревые токи. Насыщение ограничивает момент, а вихревые токи и гистерезисные потери вызывают нагрев мотора. Рассмотрим кривую зависимости крутящего момента шагового двигателя от скорости.

Как видно из графика, при скорости ниже определенного предела, момент, а следовательно и ток, возрастают очень быстро, вплоть до уровней, приводящих к повреждению мотора. Чтобы этого избежать, драйвер должен ограничивать нарастание тока до определенной величины. Поскольку момент пропорционален току, момент будет постоянен начиная с момента удержания до порогового значения скорости, а при скорости выше порога — ток будет ограничен индуктивностью обмоток.

В результате, скорость-моментная характеристика идеального двигателя будет начинаться с отрезка, где момент постоянный, до точки, когда мотор перестанет генерировать и потреблять реактивную мощность. Реальный шаговый двигатель обладает потерями, которые изменяют идеальную скорость-моментную характеристику. Особенно велик вклад момента от зубцовых гармоник магнитного поля(его иногда указывают в документации на двигатель). Потери в двигателе есть всегда, и чем быстрее вращается вал шагового мотора, тем больше потери, и их также необходимо вычитать из идеальной характеристики.

Обратите внимание, как реальная мощность падает вместе с ростом скорости, в том числе и на отрезке «постоянной мощности». Скругление на переходной точке обусловлено переходным процессом в цепи — драйвер постепенно превращается из источника тока в источник напряжения.

Резонанс на средних частотах

Шаговый двигатель сильно подвержен резонансу, являясь по факту аналогом маятника «подвешенный на пружине груз», где грузом является ротор, а пружиной — магнитное поле, и имеет частоту собственных колебаний, зависящую от силы тока и инерции ротора. В момент, когда разность фаз момента и скорости достигает величины 180 град., возникает резонанс – изменение магнитного поля начинает совпадать со скоростью, и скорость ротора при позиционировании на новый шаг становится слишком велика. При резонансе значительная часть энергии магнитного поля уходит на преодоление инерции ротора при колебании около положения равновесия, что выражается в значительном падении крутящего момента на валу. Накопленная кинетическая энергия ротора расходуется при возникновении резонанса примерно за 1-10 сек, поэтому разогнать двигатель можно, пройдя зону резонанса без последствий, но работать сколь-нибудь продолжительное время не удастся – вал остановится. Для устранения этого явления в драйверах используются различные антирезонансные алгоритмы.

Читать еще:  Простой паяльный фен из паяльника

Мощность двигателя

Выходная мощность двигателя (скорость×момент) пропорциональна напряжению, деленному на квадратный корень из индуктивности. Если мы увеличим вдвое напряжение ШИМ, то получим другую кривую СМХ, лежащую выше, и мощность на участке постоянной мощности вырастет вдвое. С током иная картина. Рисунок ниже показывает, что будет при выставлении на драйвере тока в 2 раза больше номинального для двигателя. Мотор начинает выделять в 4 раза больше тепла, а момент на низких оборотах увеличивается менее чем в 2 раза из-за насыщения сердечников обмоток.

Как можно видеть, мощность не увеличивается вовсе. Всегда рекомендуется выставлять ток на драйвере равным номинальному значению для двигателя. Это в том числе снизит вибрации на низких частотах, улучшит характеристики хода в микрошаговом режиме.

Напряжение питания и нагрев двигателя

Основные причины нагрева двигателя: потери на сопротивлении обмоток и ферромагнитные потери. Первая часть всем знакома – это тепловая энергия, выделяющяяся на активном сопротивлении проводов обмоток, равная I2R. Вклад этого слагаемого велик только когда двигатель находится в режиме удержания, и резко уменьшается с возрастанием скорости двигателя. Ферромагнитными потерями назваются потери на токи Фуко и гистерезисные потери. Они зависят от изменения тока и, следовательно, от питающего напряжения, и выделяются в виде тепла. Как было сказано выше, мощность двигателя растет прямо пропорционально напряжению, однако ферромагнитные потери тоже растут, причем, в отличие от мощности, — нелинейно, что и ограничивает максимальное напряжения, которое можно использовать для драйвера. Можно сказать, что максимальная полезная мощность шагового двигателя определяется количеством тепла, которое может на нем безопасно выделяться. Поэтому не следует стараться выжать полкиловатта из двигателя 57 серии, подключив драйвер к источнику в 10 кВ – у напряжения есть разумные пределы. Их можно рассчитывать разными способами. Эмпирически было получено несколько оценок сверху для максимального питающего напряжения ШИМ-драйвера: оно не должно превышать номинальное напряжение обмоток более чем в 25 раз или величину 32√ L, где L – индуктивность обмотки.

Для наглядности ниже показан график, показывающий ферромагнитные потери для двигателя с номинальными характеристиками 4 А, 3 В.

Кратко о мощности шагового двигателя

Выбор двигателя и питающего напряжения целиком зависят от задач. В идеале, двигатель должен выдавать достаточный момент на максимальной планируемой скорости. Необходимо отличать момент от мощности двигателя: большой момент на низких скоростях не означает, что двигатель мощный. Выходная мощность – другой, более важный параметр, её примерно можно оценить по кривой скорости-момента. Теоретически, максимальная мощность, которую можно стабильно получать с драйвера, питаемого напряжением 80 В и выходным током 7 А примерно 250 Ватт(1/3 л.с.), в реальности же для этого потребуется 2 или 3 двигателя NEMA 34. Двигатели NEMA 23 слишком малы для отвода тепла, а NEMA 42 из-за размера не подходят по импедансу: если их номинальный ток меньше, чем 7 А, то напряжение будет больше 80 В, и наоборот. Момент от зубцовых гармоник в моторах NEMA 42 существенно больше, чем в малых моторах, и обязательно должен быть учтен при расчете выходной мощности. Другими словами, выходная мощность двигателей NEMA 42 падает быстрее, чем у меньших двигателей. NEMA 42 следует использовать, если требуется получить высокий момент на низких скоростях и нет смысла использовать мотор-редуктор.

О ЧЕМ ГОВОРЯТ ХАРАКТЕРИСТИКИ ШАГОВОГО ДВИГАТЕЛЯ

Если вы опустили все, написанное выше, или прочитали, но мало что поняли, данная глава поможет разобраться, как перейти к практической части. Несколько слов о размере двигателя. Развитие производства шаговых двигателей достигло больших успехов, и теперь шаговые двигатели одного размера разных производителей обладают очень схожими характеристиками. Именно размер двигателя задает рамки, в которых может изменяться его главная характеристика — кривая скорости-момента. Индуктивность обмотки показывает, насколько крута будет кривая СМХ при одинаковом напряжении питания драйвера с ШИМ: если мы возьмем 2 двигателя индентичного размера с разной индуктивностью, и будем управлять ими одним драйвером с одним и тем же питающим напряжением, полученные кривые СМХ будут отличаться крутизной.

Большая индуктивность потенциально дает вам возможность получить больший крутящий момент, но чтобы произвести такую конверсию, потребуется драйвер с большим напряжением питания — тогда кривая СМХ поднимется вверх пропорционально увеличению напряжения. На практике почти все фирмы производят моторы одного размера в двух исполнениях — «медленный» и «быстрый», с большой и малой индуктивностью. Причем «быстрые» модели пользуются большей популярностью — для них на высоких оборотах требуется меньшее напряжение, а значит более дешевые драйверы и источник питания. А если вдруг не хватает мощности — можно взять двигатель побольше. «Медленные» модели остаются для специфических применений — в случаях, когда от шагового привода не требуется больших скоростей, нужен большой момент удержания и т.п. Ток обмотки косвенно связан с крутящим моментом, но в основном он говорит о том, какой драйвер нужно будет подобрать к этому двигателю — он должен быть способен выдавать именно такой уровень тока. Напряжения питания обмотки показывает, какое постоянное(не ШИМ) напряжение можно подавать на обмотку — таково значение напряжения, используемое драйверами постоянного напряжения. Оно пригодится при вычислении максимально допустимого напряжения питания драйвера с ШИМ, и тоже косвенно связано с максимальным крутящим моментом.

АЛГОРИТМ ПОДБОРА ШАГОВОГО ДВИГАТЕЛЯ

Так как же выбрать двигатель? Зависит от того, какими вы данными обладаете. По большому счету, выбор двигателя сводится к выбору 4 вещей — производителя, вида двигателя, размера и индуктивности. Первый параметр поддается оценке с трудом — мало у кого репрезентативная выборка образцов от разных поставщиков. Что касается вида двигателя, мы рекомендуем всегда, когда есть неопределенность в выборе, использовать биполярные шаговые двигатели с 4 выводами и малой индуктивностью. Т.е. выбор в основном заключается в выборе размера двигателя(в пределах одного размера характеристики двигателей с одной индуктивностью почти всех производителей практически совпадают). Для выбора конкретной модели можно использовать следующий алгоритм:

  • Рассчитайте максимальную скорость вращения V в об/сек, которую хотите получить от привода, и момент M, который необходимо получить от него на этой скорости(закладывайте в это значение запас в 25-40%).
  • Переведите скорость вращения в частоту полных шагов PPS, для стандартного двигателя с шагом 1.8 град PPS = 200 * V.
  • Выберите примерно подходящий на первый взгляд размер двигателя, из числа доступных моделей этого размера выберите двигатель с не самой большой индуктивностью.
  • Воспользуйтесь кривой СМХ, приводимой производителем, найдите на ней ваше значение PPS. Сверьтесь, достаточен ли момент, указанный на кривой.
  • Если момент, указанный на кривой слишком мал, рассмотрите двигатель размером побольше, если слишком велик — размером поменьше.

Однако, часто этот способ дает неверные результаты по причине большого количества факторов и допущений при расчете момента. Запросто можно получить, что для управления небольшим портальным фрезером с порталом весом 15 кг вдруг потребуются двигатели ST86-114. Чаще используют эмпирические способы, и они оказываются точнее. Один из таких способов — определение двигателей по весу портала и размеру рабочего поля. Например, выбор шагового мотора для горизонтальной передачи(оси X и Y) можно осуществить исходя из веса подвижной части, передачи, направляющих и материалов, планируемых к обработке. Для портальных станков классической компоновки, с передачей ШВП, шагом 5 мм на оборот, для обработки дерева и пластика, скорость холостого хода до 4000 мм/мин, в предположении, что направляющие оси без преднатяга и отъюстированы так, что подвижная часть ходит по ним без какого-либо сопротивления, можно порекомендовать следующие значения:

  • Вес подвижной части менее 5 кг — двигатель серии PL42 или аналогичный.
  • Вес подвижной части 5-10 кг — двигатель PL57-56 или аналогичный.
  • Вес подвижной части 10-23 кг — двигатель PL57-76 или аналогичный.
  • Вес подвижной части 23-35 кг — двигатель PL86-80 или аналогичный.
  • Вес подвижной части 35-50 кг — двигатель PL86-114 или аналогичный.

Совместно с этими оценками можно использовать оценки для размеров рабочего поля: Рабочее поле 0,1-0,5 кв.м. — двигатели PL57-76 или аналогичные. Рабочее поле 0,5-1 кв.м. — двигатели PL86-80 или аналогичные. Рабочее поле 1-1,5 кв.м. — двигатели PL86-114 или аналогичные. Если характеристики Вашего станка находятся в пограничных интервалах, скажем, вес портала 23 кг, поле около 0,5 кв. м., стоит использовать дополнительные оценочные методы. Еще один распространенный подход заключается в анализе готовых станков на рынке, которые близки к конструируемому по размерам и характеристикам — проверенная конструкция означает, что двигатели уже подобраны оптимальным образом, и можно взять их характеристики за основу.

И последнее, что можно порекомендовать — обратиться за консультацией к опытным специалистам.

Установка

Воздушная система охлаждения представляет собой обыкновенный встроенный винт, который приводится в действие вращением вала шпинделя. Для подключения жидкостной системы охлаждения потребуется присоединить шпиндель к заправочной емкости с использованием подходящих трубок и фитингов.

Кроме систем жидкостного охлаждения, для установки большинства шпинделей на станок также используются специальные преобразователи частот, посредством которых регулируется подаваемая мощность на двигатель. Диапазон мощности каждого преобразователя должен соответствовать потребляемой энергии шпинделя для того, чтобы не снизить продуктивность работы устройства. Некоторые специалисты рекомендуют рассчитывать мощность преобразователя с запасом, чтобы возможности подачи энергии на двигатель превышали максимальную мощность шпинделя. Для подключения достаточно присоединить контакты на шпинделе к соответствующим разъемам на преобразователе.

Какие двигатели применяются в станках MULTICUT?

Надежность конструкции – основной критерий, по которому инженеры компании MULTICUT оценивают комплектующие для станков от сторонних производителей. В выборе двигателей для механизмов перемещения не допускаются компромиссы в качестве.

По умолчанию на все станки устанавливаются шаговые приводы MIGE и контроллеры YAKO. Базовая комплектация выбрана исходя из пожеланий заказчиков и анализа оборудования конкурентов. Приводы демонстрируют высокие крутящие моменты и динамику. Станок стабильно работает на ускорениях до 1,5 м/с 2 . Двигатели работают в микрошаговом режиме с точностью 300 шагов на оборот. В сочетании с редуктором с передаточным отношением 5 аппаратная точность позиционирования составляет 6 мкм. «Шаговость» никак не отражается даже на самых мелких деталях.

В качестве опции заказчику предлагаются сервоприводы DELTA серии ASDA-B2. Эти двигатели отличаются отличной управляемостью: положение, момент и скорость могут регулироваться сигналом задания. По динамическим характеристикам эти моторы значительно превосходят более дорогие аналоги. Разгон от -3000 до + 3000 оборотов в минуту на холстом перемещении составляет около 10 мс. В тех моделях, которые мы устанавливаем на станки, есть тормозной резистор. В энкодер с разрешением 160000 импульсов на оборот встроен цифровой модуль управления, который позволяет оперативно выполнить конфигурирование мотора.

Если станок рассчитан на работу в высоконагруженных режимах, от него требуется хорошая производительность, то мы рекомендуем выбирать сервоприводы ESTUN. Интеллектуальные силовые модули промышленного класса, используемые в конструкции двигателей, позволяют им выдерживать перегрузки по току, развивать высокие моменты во время пуска. Производитель реализовал функцию подавления вибрации, сделал настройку простой и удобной, а двигатель — отзывчивым и точным в работе.

На настольные станки 500-й серии мы устанавливаем привода мощностью 200 Вт (на каждую ось). В базовой комплектации крупногабаритных моделей мощность шаговых двигателей составляет 400 Вт. Для всех серий станков в сервоисполнении мы предлагаем моторы мощностью 0,75 и 1 кВт.

Чтобы получить консультации по вопросам выбора и комплектации станков MULTICUT, позвоните по контактному телефону в вашем регионе.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector