0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ферромагнитная жидкость своими руками с картриджем от лазерного принтера

Ферромагнитная жидкость своими руками с картриджем от лазерного принтера

Вы когда-нибудь видели магнитную жидкость? Она похожа на жидкий металл и расшиперивается иголками, если к ней поднести магнит. Здесь вы найдёте инструкцию о том, как в домашних условиях сделать ферромагнитную жидкость своими руками.

Теория такова: современные лазерные принтеры содержат минерал магнетит (Fe3O4). Он нужен для того, чтобы частички краски прилипали к бумаге. Этот минерал реагирует на магнитные поля и таким образом хорошо подойдёт для нашего эксперимента.

Изготовить своими руками жидкость, реагирующую на магнитное поле, по силам практически каждому — без каких-либо реактивов и всего за несколько минут. Конечно, качество её существенно хуже, чем у полученной химическим пу­тём. В частности, консистенция продукта получается такой, что его скорее мож­но назвать не «жидкостью», а «жижей». Да и время осаждения магнитных частиц достаточно мало — обычно от нескольких секунд до нескольких минут. Зато ника­кой химии и экзотических технологий, лишь просеивание и смешивание. Для того, чтобы сделать «магнитную жижу», требуется всего лишь на­брать необходимое количество мелких стальных опилок. Чем мельче, тем лучше, поэтому наиболее подходящей является стальная пыль, остающаяся после работы «болгарки» или точила.

Пыль собирается магнитом (не слишком сильным — не столько для предотвращения большого остаточного намагничивания, сколько для того, чтобы железные опилки не так интенсивно стремились к нему и увлекали с собой поменьше немагнитной пыли).

Затем для отсева грязи и крупных фракций собранно её можно просеять через ткань на газете. Чем плотнее ткань, тем мельче будет просеянная пыль, но тем дольше придётся трясти мешо­чек.

Ещё раз подчеркну — стальные частички должны быть как можно мельче. Для по­лучения мелкой стальной пыли следует использовать мелкозернистый (доводочный) точильный круг. В качестве ориентира можно предложить следующее — при рассмотрении невооружённым глазом нельзя определить форму пылинок, на белой бу­маге они выглядят мельчайшими точками. Если форма опилок хорошо различима (при нормальном зрении обычно это соответствует размерам от 0.1-0.3 мм и больше), то такие опилки слишком крупны, они очень быстро осядут и будут практически неподвижными!

Рисунок №1 — Железные опилки и магнит

Отобранная стальная пыль заливается жидкостью, хорошо смачивающей металл. Это может быть обычная вода — желательно, насыщенная поверхностно-активными веществами, то есть мылом или другим моющим средством (пенообразование здесь вредно, поэтому оно должно быть как можно меньше!).

Но! Во избежание быстрой коррозии железных пылинок, способной просто-напросто «съесть» их за несколько дней, для стали лучше использовать жидкое машинное масло. Вполне подойдёт бы­товое — то, что используется для смазки швейных машинок.

Концентрация стальной пыли в жидкости должна быть, с одной стороны, не слишком высокой, чтобы жидкость не стала чересчур густой и вязкой, а с другой стороны, не слишком низкой, иначе перемещение магнитных частиц не сможет ув­лечь с собой сколько-нибудь заметный объём жидкости. Она подбирается опытным путём с помощью постепенного добавления опилок в жидкость, тщательного пере­мешивания и проверки магнитом. Лучше получить небольшой избыток базовой жид­кости, нежели её недостаток, так как в последнем случае подвижность получен­ной субстанции уменьшается очень заметно.

Конкретная величина кри­тической силы магнитного поля зависит как от магнитных свойств используемого металла, так и от силы смачивания металла базовой жидкостью или ПАВ, а также от температуры жидкости и размеров металлических частиц. При снятии магнитного поля подвижность жид­кости восстановится, если остаточная намагниченность будет не слишком боль­шой.

Почему мы?

Самовывоз в день заказа

Доставка по всей России

Оплата банк. картами

“Волшебная” жидкость Стива Папелла: от проектов NASA к жидкостному охлаждению динамиков

Несмотря на своё происхождение сегодня это изобретение применяется во вполне земных устройствах, начиная от жестких дисков и заканчивая жидкостными компьютерами и крайне своеобразными часами , о которых уже писали на GT. Жидкость востребована в электронике, машиностроении, медицине, оборонке и массе других областей. Под катом я расскажу как появилось это изобретение для космоса, как оно используется в экерктроакутике и какие споры ведутся любителями аудио вокруг его применения.

История создания и отказ от использования

Ферромагнитную жидкость создал американский ученый Стив Папелл более 50 лет назад. В то время Папелл работал инженером в NASA и участвовал в разработке двигателей для космических аппаратов.


Стив Папелл и ферромагнитная жидкость

Разработчик столкнулся с проблемой — нужно создать систему которая в заставляла бы топливо из бака перемещаться к отверстию через которое насос закачивает его в камеру сгорания. Если речь идёт о жидком топливе, то в условиях невесомости жидкость свободно левитирует в баке.

Для решения задачи ученый решил применить оригинальную идею — сделать топливо магнитным, смешав его с какой-нибудь массой обладающей магнитными свойствами. Таким образом, с применением внешних магнитов можно будет легко управлять топливом в баке.

Для реализации такого механизма управления лучше всего подходила жидкая субстанция. Через несколько недель экспериментов Папелл подарил миру ферромагнитную жидкость. Для создания своей жидкости ученый использовал двойной оксид железа магнетит (Fe3O4), который он измельчал смешивая олеиновой кислотой и затем добавляя органические растворители.

После завершения техпроцесса получалась коллоидная суспензия, которая содержала взвесь частиц магнетита размером 0,1 — 0,2 микрона, в соотношении: 5% частиц магнетита, 10 % модификатора, 75% растворителя (например масло). Молекулы олеиновой кислоты использовались как модификатор, который не позволял слипаться частицам оксида.

Читать еще:  Делаем кольцо из монеты

Изобретение инженера было запатентовано в 1965-м году US 3215572 A (Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles).

Изобретение Папелла было с восторгом принято его коллегами по научному сообществу и космическому агентству, позволило его имени остаться в истории физики. Однако, не смотря на интерес, NASA так и не использовало его идеи, главным образом потому, что было отдано предпочтение твердому ракетному топливу. Дальнейшие эксперименты с ферромагнитной жидкостью в NASA касались систем стабилизации корабля в пространстве.

Созданная Папеллом жидкость, оценивается как очень весомый вклад — этим изобретением он заложил основу одной из новых отраслей физического знания — феррогидродинамике. Дальнейшие разработки и внедрение ферромагнитной жидкости в производственную практику велись под руководством коллеги Папелла по NASA, Рона Розенцвейга. Работы проводились в корпорации AVCO, которая ставила целью коммерческое применение этого изобретения.


Рон Розенцвейг и ферромагнитная жидкость

Динамики с жидкостью

Сложно сказать, какая компания начала первой использовать ферромагнитную жидкость для производства динамиков. Компания SONY стала первым массовым производителем звуковых излучателей с ферромагнитной жидкостью, применив её для создания ВЧ-драйверов и широкополосников в 2012-м году. Сегодня, по данным www.czferro.com сегодня более 300 млн динамиков в год выпускаются с применением феррофлюида.

Жидкость применяется для отвода тепла от звуковой катушки, а также выступает в качестве дополнительного демпфера, который гасит паразитные резонансы. В существующих сегодня конструкциях ферромагнитная жидкость удерживается в зазоре между катушкой и магнитом благодаря воздействию магнитного поля, выполняя роль центрирующей шайбы.

В классической конструкции динамиков шайба обеспечивающая центрирование и амортизацию звуковой катушки напрямую связывает её (катушку) с диффузором. Исследования проведенные в SONY показали, что традиционная конструкция вносит больше искажений.

Дело в том, что шайба, фактически выступает как второй диффузор и соответственно создает колебания. Устранение шайбы сводит к нулю её влияние на звуковоспроизведение. При использовании жидкости возможно уменьшение расстояния между катушкой и диффузором, что позволяет свести к минимуму потери при передаче колебаний, сделать динамик более плоским и компактным (при сохранении прежнего уровня громкости)

Жидкость обеспечивает прирост громкости от 2 дБ и на 35% снижает энергопотребление. Соответственно конструкция повышает КПД динамика, при этом обеспечивая дополнительное демпфирование. Эффекты жидкости позволяющие увеличить демпфирование и снизить резонансы такого динамика были исследованы уже в 21-м веке aip.scitation.org/doi/abs/10.1063/1.345854 .

“Мокрые” против “сухих”

Появление нового типа динамиков ожидаемо вызвало реакцию в среде людей небезразличных к аудиоаппаратуре. Как водится разгорелись дискуссии, где мнения аудиофилов, меломанов и прочих сочувствующих разделились.

Традиционалисты “попробовав” новшество отметили ухудшение динамический (и в особенности “микродинамических”) характеристик. Критики особенно часто упирают на субъективные ощущения при прослушивании и авторитет своего экспертного опыта в аудио. Сторонники инновации отметили снижение искажений, более высокую верность воспроизведения и высокую громкость (учитывая размеры динамиков), при отсутствии объективных данных о том, чем плоха жидкость.

Дошло даже до того, что некоторые “смелые экспериментаторы” стали удалять жидкость из зазора и рассказывать о том, что “звук стал значительно лучше” (я устал комментировать такие вещи, поэтому как факт).

Кто-то также усиленно пытался культивировать стереотип, о том, что динамики с жидкостью устанавливают только в бюджетную аппаратуру, что также не соответствует действительности.

С шедеврами логики по этой теме от некоторых “умудренных жизненным опытом” любителей аудио образца 2012-го года можно ознакомиться здесь .

Со своей стороны хочу предостеречь желающих удалить жидкость из динамиков своей аудиосистемы, телевизора или ноутбука. Инженеры производителей не идиоты, и если бы они хотели применить конструкцию с шайбой они бы это сделали. Не являюсь большим экспертом в “микродинамике”, но вероятно, что любые динамические изменения при использовании жидкости будут находиться в пределах величин которыми можно пренебречь (если вообще будут).

Ферромагнитная жидкость одно из интереснейших изобретений прошлого столетия, внедрение которого только начинается. Её использование вместо центрирующей шайбы — одна из самых заметных и значимых инноваций в производстве динамических излучателей за последние 10 лет. Возможно статья кому-то покажется однобокой, но мне не удалось найти весомых аргументов в пользу того, что жидкость “вредит звуку” или как-то его портит. Если такие факты существуют — делитесь в комментах. Но пока, на мой взгляд — это исключительно благо.

В качестве завершения рекомендую к просмотру несколько потрясающе красивых роликов с ферромагнитной жидкости.

Занятые визуальные эффекты и скульптуры из ферромагнитной жидкости:

Категории товаров:

  • Подобрать подарок (468)
    • Для неё (188)
    • Для ребенка (281)
    • VIP подарки (77)
    • Для него (169)
  • Лава-Лампы (319)
    • Лава-лампы Amperia (39)
    • Лава-лампы с воском (204)
    • Лава-лампы с блёстками (Глиттер) (36)
    • Напольные лава лампы (10)
    • Лава-лампы Mathmos UK (96)
    • Аксессуары и комплектующие (61)
  • Плазменные шары, диски, трубы (81)
    • Плазменные Шары AMPERIA (5)
    • Классические плазменные шары (19)
    • На декоративных подставках (30)
    • Плазменный шар Купол (5)
    • Плазменные трубы (8)
    • Плазменные диски (18)
    • Плазменные колонки (1)
  • Левитирующие модели, левитроны магнитные (91)
    • Мендосинские двигатели (12)
    • Левитирующие глобусы (35)
    • Левитирующие лампочки (11)
    • Левитирующие горшки (6)
    • Левитирующие растения (15)
    • Левитирующие фоторамки (6)
    • Другие левитроны (7)
  • Декоративные фонтаны (53)
  • Конструкторы (323)
    • Полигональные фигуры PAPERRAZ (78)
    • Ugears (55)
    • EcoWoodArt (EWA) (48)
    • Wood Trick (46)
    • Трофейные головы (деревянные) (15)
    • Конструкторы Армия России (12)
    • Развивающие конструкторы Амперка (22)
    • Столярные наборы (28)
    • Металлические конструкторы TimeForMachine (9)
  • Настольные маятники (38)
    • Маятники Ньютона (19)
    • Магнитные маятники (12)
    • Другие маятники (8)
  • Светильники и ночники (259)
    • 3-D лампы-ночники (75)
    • Ночник луна (15)
    • Ночники (117)
    • Светодиодные камины (1)
    • Ночник картина (10)
    • Неоновые светильники (30)
    • Необычные лампы (91)
  • Светодиодные цветы, Розы в колбе (149)
    • Розы в колбе (54)
    • Светодиодные розы (36)
    • Светодиодные тюльпаны (32)
    • Светодиодные орхидеи (23)
    • Остальные цветы (4)
  • Планетарии и проекторы звездного неба (53)
    • Домашние планетарии (14)
    • Разнообразные проекторы (31)
  • Необычные подарки (98)
    • Другие подарки (11)
    • Слаймы Slime (57)
    • Космический песок (4)
    • Необычные глобусы (8)
    • Дерево из Цетрарии (15)
  • Пазлы, Эксперименты, Головоломки (358)
    • IQPuzzle (42)
    • Эксперименты в коробочке (41)
    • Занимательные Головоломки (67)
    • Деревянные 3D пазлы (15)
    • Деревянные пазлы Unidragon (24)
    • Деревянные карты мира (10)
    • Деревянные пазлы DaVICI (52)
    • Деревянные пазлы Артвентура (28)
  • Полиморфус, 3D ручки, Слепки рук (54)
    • Полиморфус (36)
    • 3D ручки (13)
    • Слепки рук Isculp (5)
  • Увлажнители воздуха, благовония (89)
    • Увлажнители на батарею (4)
    • Арома-увлажнители (18)
    • Ультразвуковые увлажнители (2)
    • Благовония стелющийся дым (45)
    • Арома-диффузоры (5)
    • Эфирные масла (15)
  • Необычные часы (50)
    • Ламповые ретро часы (28)
    • Перекидные часы (16)
    • Другие часы (8)
  • Самовращающиеся глобусы MOVA (32)
  • Штормглассы, термометры (19)
  • Калейдоскопы (38)
  • Катушки Тесла и реквизит (32)
  • Двигатели Стирлинга (12)
  • Цветомузыка, диско шары (14)
  • Упаковка и открытки (39)
    • Подарочная упаковка (21)
    • Открытки (18)
  • Уценённые товары % (17)
Читать еще:  Делаем «гаражный» горн для закалки заготовок ножей

Полезные страницы:

  • Акции и скидки
  • ДоставкаСамовывоз
  • Отзывы
  • Контакты
  • Блог
  • Оптовикам
  • Оплата

Контактная информация:

  • +7 (929) 674-82-89
    • Адрес шоу-рума (Москва):

      м. Преображенская площадь

      Россия, Москва, 1-ая улица Бухвостова, д.12/11, корп.12, вход в «НИИДАР», офис 109, c проходной позвонить.

      График работы:

      • Будни: 11 — 20 (Мск)
      • Суббота: 12 — 19 (Мск)
      • Воскресенье: 12 — 17 (Мск)

      Изготовить своими руками жидкость, реагирующую на магнитное поле, по силам практически каждому — без каких-либо реактивов и всего за несколько минут. Конечно, качество её существенно хуже, чем у полученной химическим пу­тём. В частности, консистенция продукта получается такой, что его скорее мож­но назвать не «жидкостью», а «жижей». Да и время осаждения магнитных частиц достаточно мало — обычно от нескольких секунд до нескольких минут. Зато ника­кой химии и экзотических технологий, лишь просеивание и смешивание. Для того, чтобы сделать «магнитную жижу», требуется всего лишь на­брать необходимое количество мелких стальных опилок. Чем мельче, тем лучше, поэтому наиболее подходящей является стальная пыль, остающаяся после работы «болгарки» или точила.

      Пыль собирается магнитом (не слишком сильным — не столько для предотвращения большого остаточного намагничивания, сколько для того, чтобы железные опилки не так интенсивно стремились к нему и увлекали с собой поменьше немагнитной пыли).

      Затем для отсева грязи и крупных фракций собранно её можно просеять через ткань на газете. Чем плотнее ткань, тем мельче будет просеянная пыль, но тем дольше придётся трясти мешо­чек.

      Ещё раз подчеркну — стальные частички должны быть как можно мельче. Для по­лучения мелкой стальной пыли следует использовать мелкозернистый (доводочный) точильный круг. В качестве ориентира можно предложить следующее — при рассмотрении невооружённым глазом нельзя определить форму пылинок, на белой бу­маге они выглядят мельчайшими точками. Если форма опилок хорошо различима (при нормальном зрении обычно это соответствует размерам от 0.1-0.3 мм и больше), то такие опилки слишком крупны, они очень быстро осядут и будут практически неподвижными!

      Рисунок №1 — Железные опилки и магнит

      Отобранная стальная пыль заливается жидкостью, хорошо смачивающей металл. Это может быть обычная вода — желательно, насыщенная поверхностно-активными веществами, то есть мылом или другим моющим средством (пенообразование здесь вредно, поэтому оно должно быть как можно меньше!).

      Но! Во избежание быстрой коррозии железных пылинок, способной просто-напросто «съесть» их за несколько дней, для стали лучше использовать жидкое машинное масло. Вполне подойдёт бы­товое — то, что используется для смазки швейных машинок.

      Концентрация стальной пыли в жидкости должна быть, с одной стороны, не слишком высокой, чтобы жидкость не стала чересчур густой и вязкой, а с другой стороны, не слишком низкой, иначе перемещение магнитных частиц не сможет ув­лечь с собой сколько-нибудь заметный объём жидкости. Она подбирается опытным путём с помощью постепенного добавления опилок в жидкость, тщательного пере­мешивания и проверки магнитом. Лучше получить небольшой избыток базовой жид­кости, нежели её недостаток, так как в последнем случае подвижность получен­ной субстанции уменьшается очень заметно.

      Конкретная величина кри­тической силы магнитного поля зависит как от магнитных свойств используемого металла, так и от силы смачивания металла базовой жидкостью или ПАВ, а также от температуры жидкости и размеров металлических частиц. При снятии магнитного поля подвижность жид­кости восстановится, если остаточная намагниченность будет не слишком боль­шой.

      1. Вылейте немного жидкости в небольшой контейнер.
      2. Подставьте магнит под нижнюю часть контейнера
      3. Жидкость начнёт расшипериваться!

      Если результат не похож на то, что вы видите на фотографии, то, скорее всего проблемы с тонером. Некоторые марки содержат больше или меньше магнитных составляющих. Также можете попробовать добавить еще немного масла, или наоборот, убрать его. Некоторые марки совсем не содержат феррофлюид — тогда вам нужно будет найти другой картридж.

      Почему мы?

      Самовывоз в день заказа

      Доставка по всей России

      Оплата банк. картами

      “Волшебная” жидкость Стива Папелла: от проектов NASA к жидкостному охлаждению динамиков

      Несмотря на своё происхождение сегодня это изобретение применяется во вполне земных устройствах, начиная от жестких дисков и заканчивая жидкостными компьютерами и крайне своеобразными часами , о которых уже писали на GT. Жидкость востребована в электронике, машиностроении, медицине, оборонке и массе других областей. Под катом я расскажу как появилось это изобретение для космоса, как оно используется в экерктроакутике и какие споры ведутся любителями аудио вокруг его применения.

      История создания и отказ от использования

      Ферромагнитную жидкость создал американский ученый Стив Папелл более 50 лет назад. В то время Папелл работал инженером в NASA и участвовал в разработке двигателей для космических аппаратов.


      Стив Папелл и ферромагнитная жидкость

      Разработчик столкнулся с проблемой — нужно создать систему которая в заставляла бы топливо из бака перемещаться к отверстию через которое насос закачивает его в камеру сгорания. Если речь идёт о жидком топливе, то в условиях невесомости жидкость свободно левитирует в баке.

      Для решения задачи ученый решил применить оригинальную идею — сделать топливо магнитным, смешав его с какой-нибудь массой обладающей магнитными свойствами. Таким образом, с применением внешних магнитов можно будет легко управлять топливом в баке.

      Для реализации такого механизма управления лучше всего подходила жидкая субстанция. Через несколько недель экспериментов Папелл подарил миру ферромагнитную жидкость. Для создания своей жидкости ученый использовал двойной оксид железа магнетит (Fe3O4), который он измельчал смешивая олеиновой кислотой и затем добавляя органические растворители.

      После завершения техпроцесса получалась коллоидная суспензия, которая содержала взвесь частиц магнетита размером 0,1 — 0,2 микрона, в соотношении: 5% частиц магнетита, 10 % модификатора, 75% растворителя (например масло). Молекулы олеиновой кислоты использовались как модификатор, который не позволял слипаться частицам оксида.

      Изобретение инженера было запатентовано в 1965-м году US 3215572 A (Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles).

      Изобретение Папелла было с восторгом принято его коллегами по научному сообществу и космическому агентству, позволило его имени остаться в истории физики. Однако, не смотря на интерес, NASA так и не использовало его идеи, главным образом потому, что было отдано предпочтение твердому ракетному топливу. Дальнейшие эксперименты с ферромагнитной жидкостью в NASA касались систем стабилизации корабля в пространстве.

      Созданная Папеллом жидкость, оценивается как очень весомый вклад — этим изобретением он заложил основу одной из новых отраслей физического знания — феррогидродинамике. Дальнейшие разработки и внедрение ферромагнитной жидкости в производственную практику велись под руководством коллеги Папелла по NASA, Рона Розенцвейга. Работы проводились в корпорации AVCO, которая ставила целью коммерческое применение этого изобретения.


      Рон Розенцвейг и ферромагнитная жидкость

      Динамики с жидкостью

      Сложно сказать, какая компания начала первой использовать ферромагнитную жидкость для производства динамиков. Компания SONY стала первым массовым производителем звуковых излучателей с ферромагнитной жидкостью, применив её для создания ВЧ-драйверов и широкополосников в 2012-м году. Сегодня, по данным www.czferro.com сегодня более 300 млн динамиков в год выпускаются с применением феррофлюида.

      Жидкость применяется для отвода тепла от звуковой катушки, а также выступает в качестве дополнительного демпфера, который гасит паразитные резонансы. В существующих сегодня конструкциях ферромагнитная жидкость удерживается в зазоре между катушкой и магнитом благодаря воздействию магнитного поля, выполняя роль центрирующей шайбы.

      В классической конструкции динамиков шайба обеспечивающая центрирование и амортизацию звуковой катушки напрямую связывает её (катушку) с диффузором. Исследования проведенные в SONY показали, что традиционная конструкция вносит больше искажений.

      Дело в том, что шайба, фактически выступает как второй диффузор и соответственно создает колебания. Устранение шайбы сводит к нулю её влияние на звуковоспроизведение. При использовании жидкости возможно уменьшение расстояния между катушкой и диффузором, что позволяет свести к минимуму потери при передаче колебаний, сделать динамик более плоским и компактным (при сохранении прежнего уровня громкости)

      Жидкость обеспечивает прирост громкости от 2 дБ и на 35% снижает энергопотребление. Соответственно конструкция повышает КПД динамика, при этом обеспечивая дополнительное демпфирование. Эффекты жидкости позволяющие увеличить демпфирование и снизить резонансы такого динамика были исследованы уже в 21-м веке aip.scitation.org/doi/abs/10.1063/1.345854 .

      “Мокрые” против “сухих”

      Появление нового типа динамиков ожидаемо вызвало реакцию в среде людей небезразличных к аудиоаппаратуре. Как водится разгорелись дискуссии, где мнения аудиофилов, меломанов и прочих сочувствующих разделились.

      Традиционалисты “попробовав” новшество отметили ухудшение динамический (и в особенности “микродинамических”) характеристик. Критики особенно часто упирают на субъективные ощущения при прослушивании и авторитет своего экспертного опыта в аудио. Сторонники инновации отметили снижение искажений, более высокую верность воспроизведения и высокую громкость (учитывая размеры динамиков), при отсутствии объективных данных о том, чем плоха жидкость.

      Дошло даже до того, что некоторые “смелые экспериментаторы” стали удалять жидкость из зазора и рассказывать о том, что “звук стал значительно лучше” (я устал комментировать такие вещи, поэтому как факт).

      Кто-то также усиленно пытался культивировать стереотип, о том, что динамики с жидкостью устанавливают только в бюджетную аппаратуру, что также не соответствует действительности.

      С шедеврами логики по этой теме от некоторых “умудренных жизненным опытом” любителей аудио образца 2012-го года можно ознакомиться здесь .

      Со своей стороны хочу предостеречь желающих удалить жидкость из динамиков своей аудиосистемы, телевизора или ноутбука. Инженеры производителей не идиоты, и если бы они хотели применить конструкцию с шайбой они бы это сделали. Не являюсь большим экспертом в “микродинамике”, но вероятно, что любые динамические изменения при использовании жидкости будут находиться в пределах величин которыми можно пренебречь (если вообще будут).

      Ферромагнитная жидкость одно из интереснейших изобретений прошлого столетия, внедрение которого только начинается. Её использование вместо центрирующей шайбы — одна из самых заметных и значимых инноваций в производстве динамических излучателей за последние 10 лет. Возможно статья кому-то покажется однобокой, но мне не удалось найти весомых аргументов в пользу того, что жидкость “вредит звуку” или как-то его портит. Если такие факты существуют — делитесь в комментах. Но пока, на мой взгляд — это исключительно благо.

      В качестве завершения рекомендую к просмотру несколько потрясающе красивых роликов с ферромагнитной жидкости.

      Занятые визуальные эффекты и скульптуры из ферромагнитной жидкости:

      о нас

      MotionLamps.ru — интернет-магазин лава ламп, плазмаболов, плазменных дисков и декоративных светильников.

      Дорогие покупатели, мы рады приветствовать Вас в нашем интернет-магазине. Мы делаем всё, чтобы он был удобен для Вас и Вы остались довольны покупками, сделанными у нас. В нашем магазине представлен широкий ассортимент необычных декоративных светильников для интерьера, таких как: лава-лампы различных форм, размеров, и цветов, тесла-болы, плазменные диски, ночники, а также светодинамические установки др.

      В нашем интернет-магазине Вы найдете подробнейшее описание того или иного товара, подкрепленное детальными изображениями с разных ракурсов, а также, если необходимо, специально снятыми видео, передающими полную информацию устройства и работы того или иного товара.

      Вы можете купить лава-лампы, плазмаболы, светодиодные свечи, или же любой другой понравившийся Вам светильник. Так же в нашем магазине есть возможность приобретения лава-ламп и плазменных шаров оптом.

    Ссылка на основную публикацию
    Статьи c упоминанием слов:
    Adblock
    detector